Supplementary Material 1: Strategies for Supersaturated Screening:
Group Orthogonal and Var(s+) Designs

1 Results of Questionnaire

Of the 63 survey respondents, 55% work in the field of Engineering, Manufacturing and Technology
and 26% in Academia or Education; 80% have a Master’s degree or a PhD in statistics (see Figure
1). Figure 2 shows that most respondents use Response Surface Methodology, Fractional facto-
rials/Plackett Burman designs and/or Split plot designs. Regression/ANOVA is unsurprisingly
the most common analysis technique with reported use by 95% of the respondents. Interestingly,
the next most common analysis is LASSO and/or other penalized regression techniques, followed
closely with Bayesian methods and Gaussian Process Models. Only six respondents indicated SSDs
as a design technique they use on a regular basis. Most respondents reported choosing a design
technique with which they are comfortable and/or which is associated with a straightforward anal-
ysis method. Several self-reported reasons for design choice include the particular experimental
situation and the efficiency of the design.

With regard to SSDs, 68% said they were familiar with them, and only 13 respondents reported
using a SSD in practice. Table 1 provides examples of descriptions of the use of SSDs in practice
with some successes and a failed experiment. Nineteen respondents voluntarily provided detailed
explanations of concerns they have regarding SSDs; these are categorized into groups and shown in
Figure 3. The most common concern with using a SSD is the sparsity assumptions and/or power
(Figure 3). For example, one respondent’s concern regarding SSDs was stated as “Not identifying
significant factors that are appearing insignificant”; this response was categorized both as “Spar-
sity /Power” and “Model Misspecification”. Several respondents commented on the complicated
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Figure 1: Summary of demographics for the survey respondents.
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Figure 2: Summary of the design and analysis techniques used in practice for the survey respon-
dents.

SSD User Experience

“100+ factors 64 runs; failed experiment”

“Bayesian D-optimal design with many terms that were un-
able to be estimated by the design, but were able to be
estimated after unimportant factors were removed.”

“Analytical Method Robustness testing. Successful.”

“Testing to characterize drill bit effectiveness as a function
of many input parameters. Experiment was successful due
to engineering expertise for interpretation.”

“Confounded effects that were not believed to be important
or could be estimated in aggregate. Without knowing the
truth, I think the design seemed successful.”

Table 1: Summary of SSD use in practice from survey responses.

analysis; “Ambiguity of interpretation if any factors are significant”, “Lack of [Degrees of Free-
dom]”. One respondent stated that they have never had a situation where a SSD seems to be the
appropriate design choice and a few others commented that it was not possible to manipulate many
factors simultaneously without “breaking the process.” Although SSDs are not widely used among
the survey respondents, 78% stated that they would be interested in learning more about these
designs.

Comments such as “Lack of [Degrees of Freedom]” and “You gamble. There is no guarantee
that you find the important few [factors]; you can find a few but not necessarily the important ones”
gives the impression that some practitioners consider SSDs as a one-shot experiment. Practitioners
also believe that sparsity is a necessary requirement for SSDs to be successful and that the analysis
is uninformative.
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Figure 3: Summary of the concerns that respondents have with using a SSD.

2 Design Characteristics

n k Design UE(s) UE(s*) Var(s) Mean |r| Max |r|
8 12 UE(s?’) 0.0513 3.6923 3.7135 0.2023 0.7746
Var(s+) 1.2308 4.4103  2.9141 0.2334 0.6000
12 12 UE(s®) 0.0513 1.8462 18554 0.0321  0.7071
Var(s+) 0.5128 1.8462  1.5934 0.0846 0.1690
GO-SSD  0.3077  3.6923  3.6208 0.0909 0.3333
12 24 UE(s?) 0.0533 6.7733  6.7818 0.1794 0.7143
(s+) 1.6800 8.4533  5.6403 0.1952 0.7071
16 28 UE(s?) -0.0591 7.9803  7.9866 0.1466 0.5238
Var(s+) 1.7143 9.9310  7.0009 0.1624 0.5222
(
(

~—

20 24 UE(s) 0.200 5.8133 5.8086  0.0973  0.4141
s+) 06133 59733 56065  0.0965  0.4530
GO-SSD  0.4800  9.6000  9.3852  0.0783  0.6000
24 28 UE(s®) 0.1281 6.2463 6.2376  0.0832  0.3714
Var(s+) 0.7488 6.7389  6.1859  0.0860  0.3055
GO-SSD  0.2759  6.6207  6.5527  0.0370  0.3333
40 56 UE(s?) 0.1704 145965 14.5720 0.0768  0.3504
Var(s+) 1.3759 159900 14.1012  0.0808  0.3572
GO-SSD  0.4211 16.8421 16.6700  0.0327  0.6000

Table 2: Comparison of design characteristics for all simulation designs

3 Design Size and Factor Sparsity

Recall the insights of Marley and Woods (2010) regarding SSD sample size requirements as a
function of number of factors and number of active factors. In general, their simulations suggested
that the run size should be at least three times the number of active factors for successful screening
with SSDs. They also assert that the level of saturation of a SSD—the number of factors relative
to the number of runs, k/n—should be less than 2.



To further investigate the recommendations of Marley and Woods (2010), we briefly present
simulation results that include a larger variety of design sizes than previously studied. For a
complete description of the simulation, please refer to Section 3.2. We consider 22 different (n, k)
combinations (Table 3) ranging from (6, 10) to (40, 100), constructed with both the Var(s+) and
UE(s?) criteria (giving a total of 42 SSDs). Three levels of sparsity are considered (0.25n, 0.5n,
0.75n) and two levels of complexity (SN=1 and SN=3). We analyze the designs using the Dantzig
procedure outlined in Section 3.1 with v = 1.

Figure 4 shows power as a function of n for each of the 42 SSDs. Each design is indicated by
the ratio of n to the number of active factors, a, in the simulation. It is clear that the scenarios
where the number of runs was at least three times the number of active factors (n/3 > a) produce
higher power than situations where n/3 < a. This pattern is present regardless of the complexity
of the simulation scenario (compare SN=1 to SN=3 in Figure 4). We note that for designs with
fewer than 25 or so runs, violation of this rule of thumb seems to be particularly problematic for
analysis.

Figure 5 examines how the level of saturation, k/n, is associated with power. Average power
over both model complexities (SN = 1 and SN = 3) and design types versus the k/n ratio is
shown. The marker size represents the number of runs in the SSD. There is a clear degradation
in performance as the level of supersaturation increases. As the number of factors increases, the
column correlations will necessarily rise; it is well known that large column correlation can impact
ability to detect active factors. The designs with larger n generally have higher power for a similar
level of k/n.

Thus, we confirm the recommendation from Marley and Woods (2010) that n/a be larger than
3, but find no clear evidence that k/n = 2 is a changepoint. Rather, there is a steady degradation
of performance as the level of supersaturation grows larger. We also note that if the run size is
small, there is an additional possibility of reduced effectiveness.

n k n k
6 10| 15 45
8 12|16 28
9 18|18 22

10 11|20 34
10 15|20 24
10 22|24 28
10 28 126 31
12 12 {31 33
12 24 |40 56
14 24|40 85
15 35|40 100

Table 3: SSD sizes used in simulations.
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Figure 4: Power vs. run size (40 SSDs shown).
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4 Var(s+) and Dantzig Selector Simulation Results

This section contains the results for the simulations referred to in Section 4.1. We compare three
versions of the Dantzig selector (y = o2, v = 0.1 x max|3;|, and § = 0) for Var(s+)-optimal SSDs.

SN=1 SN=1 SN=3 SN=3
Known Unknown Known Unknown
— ~ - — N E
S i T —
- IS
IS

1.0 1
0.8
0.6
0.4
0.2
1.0 1
0.8
0.6
0.4
0.2
1.0 1 =
084 v S~ \ S S
064 ~=—IF SST= RN
0.4 | =
0.2
1.0 — —_ 3=0
’go.s- T i o >~ (3
08.6: — ~< 2 A = =+ y=Data Driven
o 571 =
1.0 — = ~Y7°
el === |[ = — [z
0.4 1 2
0.2+
1.0 1 ~— ——— ~— — [
SRR | R B
0.4 8
0.2
1.0' T — —_
8_2_ === :& — e 2
0.4- : 8
0.2

0.25M0.5n0.75n 0.25n0.5n0.75n 0.25n0.5n0.75n 0.25n0.5n0.75n
Sparsity

Figure 6: Power vs. Sparsity level for the Var(s+) designs by sign specification (known, unknown)
and model complexity (SN) for the different values of v and the § = 0 Dantzig solution.
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Figure 7: Type I Error vs. Sparsity for Var(s+) designs by sign specification (known, unknown)
and model complexity (SN) for the different values of v and the 6 = 0 Dantzig solution.
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Figure 8: False Discovery Rate vs. Sparsity for Var(s+) designs by sign specification (known,
unknown) and model complexity (SN) for the different values of v and the § = 0 Dantzig solution.
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Figure 9: Average number of potentially active factors vs. Sparsity for Var(s+) designs by sign
specification (known, unknown) and model complexity (SN) for the different values of « and the
0 = 0 Dantzig solution.



5 Additional GO-SSD Simulation Results

This section contains results for simulations referred to in Section 5.3.
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Figure 10: False Discovery Rate vs. Sparsity for GO-SSDs by sign specification (known, unknown)
and model complexity (SN) for each analysis method.
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Figure 11: Average number of potentially active factors vs. Sparsity for GO-SSDs by sign specifi-
cation (known, unknown) and model complexity (SN) for each analysis method.
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