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Abstract

The k -chart, based on Support Vector Data Description, has received recent atten-

tion in the literature. We review four different methods for choosing the bandwidth

parameter, s, when the k -chart is designed using the Gaussian kernel. We provide

results of extensive Phase I and Phase II simulation studies varying the method of

choosing the bandwidth parameter along with the size and distribution of sample data.

In very limited cases the k -chart performed as desired. In general, we are unable to

recommend the k -chart use in a Phase I or Phase II process monitoring study in its

current form.

Keywords: One-class classification, Process Monitoring, Support Vector Data Descrip-

tion

1 Introduction

The k -chart [9] based on Support Vector Data Description ([10], [12]) has received recent

attention in the literature. Support Vector Data Description (SVDD) is a One Class Clas-

sification (OCC) method that attempts to specify a boundary with the minimum volume
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around a distribution of data. There are several different types of OCC methods used in

process monitoring and for a recent overview see Weese et al. [14]. When directly applied

to the data, SVDD encapsulates data by fitting the minimum volume hypersphere around

the data and when a kernel tranformation is used with SVDD, the boundary can take any

flexible shape. Although Tax and Duin [10] did not present SVDD specifically as a process

monitoring method, the supporting example in Tax et al. [13] is in essence a classic Phase I

problem. In their motivating example engineers seek to establish baseline operating condi-

tions for a machine, which is the goal of a Phase I anlaysis. It is important to note that the

baseline dataset with which to establish the control boundary was known to be in control,

which is not a common assumption in Phase I analysis. Sun and Tsung [9] noticed the sim-

ilarity between SVDD and statistical process control and adapted SVDD as a control chart

known as the k -chart. There have been several case studies published ([4], [3], [5]) using the

k -chart. Subsequently, there is a wide range of guidance on the implementation of this chart

in practice, primarily for Phase II applications where the goal is to monitor a process for

changes. The goal of this work is to expand upon previous simulation studies and suggest

how to choose the bandwidth of the Gaussian kernel function for k -chart performance. The

paper is organized as follows. In Sections 2 and 3 we will give an overview of SVDD and

the k -chart. In Section 4 we discuss the results of the simulations for the Phase I use of the

k -chart and for the Phase II use in Section 5. Finally, we present recommendations to users

regarding the use of the k -chart and discuss the best choice of s, the bandwidth parameter,

for desired performance on any size data set.

2 Support Vector Data Description

Inspired by Support Vector Machines (SVM), SVDD is an unsupervised learning method

used to give a description (or produce a boundary) around a data set. Whereas SVM

separates classes by maximizing the margin (the distance between the closest objects of two

classes), SVDD maximizes the minimum volume surrounding a data set and relies on user
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supplied parameters to determine how large the boundary should be. In SVM the boundary

between the two classes is defined by only a few points of each class, called the support

vectors. Similarly, in SVDD the boundary surrounding a data set is also defined only by

the points farthest from the center of the data. These boundary defining points are referred

to as the support vectors. To obtain the SVDD hypersphere, defined by a center µ and a

radius R, we minimize R using

F (R,µ, ξi) = R2 + C
∑
i

ξi

s.t. (xi − µ)T (xi − µ) ≤ R2 + ξi and ξi ≥ 0, i = 1, ..., N, (1)

where each ξi is a slack variable that models the error for the ith of N observations. C

is a trade-off parameter which controls the size of ξi and the fraction of samples lying on

or outside the boundary. Essentially C controls the trade-off between the complexity of

the boundary and the error. The boundary defining support vectors are either going to be

outside the boundary (ξi > 0) or on the boundary (ξi = 0). As C increases, the hypersphere

will contain more data. When some outliers are expected (as in a typical process control

situation) then C can be set as C ≤ 1
N ·fraction outliers . Since it is more intuitive to set the

fraction of outliers than the value of C, Tax and Duin [11] defined the parameter ν as

ν = 1
NC , or the fraction of outliers expected. From this point forward, we will discuss the

choice of C by the specification of ν. The shape of the boundary found by SVDD can

also be altered by employing a kernel transformation to the data prior to performing the

optimization in equation (1). Although many different kernels can be used, Tax and Duin

[10] shows that the Gaussian Kernel is preferred. Equation (2) shows the Gaussian kernel

function, which requires the specification of the bandwidth parameter s.

.

3



K(x, y) = exp
(
− ‖x− y‖

2

s2

)
(2)

The simultaneous optimization of s and ν creates complexity when determining the

appropriate SVDD boundary for a data set and there have been several recommendations

on how to simultaneously choose these parameters to find the optimal boundary in the

literature (e.g., [10], [11], [12], [1]). In general the larger the value of s, the larger the

boundary will be and the choice of s is more important to the construction of the optimal

boundary than ν. In fact, Brereton and Lloyd [1] and Tax and Duin [10] recommend

choosing ν to be 0, optimize s and then adjust ν accordingly. Tax and Duin [11] introduce

a method for generating “fake” outliers to surround a data set and using the Type I and

Type II error rates of the samples and outliers accordingly to simultaneously optimize s

and ν. In this paper we will specify the choice of ν, as is typically done in Phase I, and

examine methods for determining s.

The choice of s for SVDD has been a topic of research and a particularly appealing

method, due to its simplicity, is presented by Khazai et al. [7]. They recommend choosing

s based on equation (3) where s2ij is the sample variance of variable j for class i.

s =

( N∑
i=1

s2ij

)1/2

(3)

Tax and Duin [10] show that the upper bound of the error on a data set can be estimated

using the number of support vectors (SV) divided by the sample size (N). In fact, one could

iterate through values of s to find the value that gives the number of support vectors to

generate a desired error rate for the baseline data set. Tax and Duin [12] also state that

if the number of support vectors will not decrease sufficiently enough to obtain the error

estimate desired, then a larger sample size is required.

Figure ?? shows the relationship between the bandwidth, s and the number of support

vectors for a sample of N=100 observations from a p-variate t-distribution with d.f.=5 (p=2,
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Figure 1: Plot of how the number of support vectors changes with the choice of the band-
width parameter for data generated from the t-distribution (d.f=5) for N=100 and dimen-
sion (d)=2, 10, 50 and ν = 0

15, 30). Because the number of support vectors affects the complexity of the boundary,

it is very important that s is well chosen. As the value of s increases, the number of

support vectors decrease and eventually level off for all dimensions. Additionally, higher

dimensions require more support vectors. Figure 2 shows (for p=2) the boundaries produced

for different values of s for ν = 0. When s is small (s = 1)the boundary is overfit and s = 5

produces a boundary that is too large to describe the data. A value of s=3 seems to describe

the distribution of this bivariate data well.

In addition to the bandwidth, s, the parameter ν also affects the shape of the boundary.

Setting s = 3, Figure 3 displays the different boundaries when the parameter ν is varied.

For each different value of ν=0, 0.01, 0.1, 0.25, the number of support vectors are 7, 7, 14,

and 26 respectively. Additionally, notice that when ν = 0.01 none of the n=100 points are

outside the boundary. Recall, the parameter ν is an upper bound for the fraction of data

outside of the boundary. In fact this boundary is not markedly different from the boundary

when ν=0 (see Figures 3a and 3b). This is due to the fact that there is not a large enough

sample size to attain the desired error. Since, #SV/N is the upper bound on the fraction
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(a) s=1

(b) s=2

(c) s=3

(d) s=4

(e) s=5

Figure 2: Different boundaries found for different values of s (ν=0) for N=100 and p=2
where x is generated from a t-distribution with d.f.=5
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outside of the boundary. For N=100 and ν=0.01 there would only need to be one support

vector. It is not possible to create a boundary with just one support vector. Geometrically,

a minimum of two points are required to define the boundary if the boundary were a perfect

sphere. As the shape become more complex, more points are required. As the number of

support vectors required increases, the sample size must also increase to attain the desired

fraction of outliers, thus setting the Type I error rate. Since each of the parameters ν and

s change the boundary, either both must be optimized at one time as in Tax and Duin [11]

or separately as in Brereton and Lloyd [1].

3 k Chart Overview

Sun and Tsung [9] were the first to recognize the natural extension of SVDD to a typical

process monitoring problem. They used the kernel distance from the center of the data

description as the monitoring statistic and the boundary generated by SVDD as the control

chart limit. They noted that in cases where the data is not normally distributed, the k -chart

might be preferable to the T 2 chart. In this early work, they do not provide guidance on

the choice of the parameters, ν or s. Gani et al. [4] compared the performance of Sun and

Tsung’s [9] design of the k -chart with the k Nearest Neighbors-chart (kNN-chart) but did

not give recommendations on the selection of ν or s.

Ning and Tsung [8] updated the design of Sun and Tsung [9] using the outlier method

Tax and Duin [11] to optimize ν and s by modifying weight given to Type I and Type

II errors. The design of the k -chart recommended Ning and Tsung [8] did not use the

boundary found by SVDD, but the (1 − α)th quantile of the bootstraped kernel distances

using the optimum s value. Grasso et al. [5] used this design of the k -chart in comparison

with fuzzy neural networks on a study of multimode process data. It should be noted that

Gani et al. [4], Gani and Limam [3] and Grasso et al. [5] assumed an in-control reference

sample and compared Phase II performance based on ARL. Ning and Tsung [8] suggested

a leave-one-out validation procedure to find the Phase I boundary; however, only Phase II
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(a) ν=0

(b) ν=0.01

(c) ν=0.1

(d) ν=0.25

Figure 3: Different boundaries found for different values of ν (s = 3) for N=100 and p=2
where x is generated from a t-distribution with d.f.=5

8



simulation results, using the bootstrapped boundary are presented in their work. We do

not include bootstrapped control limits in this study as it did not substantially improve

performance. This is consistent with previous research, e.g. Jones and Woodall [6, p. 372]

state that “The results of these simulation studies show that the bootstrap control charts

do not perform substantially better than the standard method....”

While the procedure of Tax and Duin [11] and subsequently Ning and Tsung [8] enables

a user to find values of s and ν, the computational demand needed to generate enough

”fake” outliers to adequately fill the space is quite large. Tax and Duin [11] suggested

a ratio of 1 observation to 250 outliers to find an adequate boundary for a dimension of

p=10. Additionally, Ning and Tsung [8] showed that N=4000 is needed to attain desired

in-control ARL for p=2. Using a rough estimate of Tax and Duin [11] ratio of 1 to 250

adjusted by 1/5 to account for the reduced dimension from p=10 to p=2 would necessitate

200,000 generated outliers.

The k -chart warrants further investigation for the following reasons: (1) the boundary

is flexible (2) there is is no distributional assumption necessary (3) the PRTools Matlab

toolbox [2] is available for free to implement the k -chart with minimal additional coding

required (4) adaptation to kernels other than the Gaussian could allow for use with mixed

data types. In the following sections we greatly expand upon previous simulation studies

in the literature. We found the existing simulation studies to be limited, perhaps due

to the computation requirements necessary to adequately assess the chart performance.

Generating artificial outliers is computationally intensive and as such, Ning and Tsung [8]

provide only a few simulation cases.

4 Phase I Simulation

Our goal was to investigate within and between sample Phase I performance using m = 100

different samples of size n. The simulation results that follow use 48 separate simulation

cases of m = 100 Phase I reference samples each. To ease the computational burden,
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we did not directly use the method of Ning and Tsung [8]. We developed a method to

emulate their choice of s. For a fixed value of ν, as s increases, the volume of the boundary

surrounding the data increases, see Figure 2. Figure ?? shows that the number of support

vectors rapidly decreases as the size of the bandwidth is increased and eventually levels

off. Because the number of support vectors determines the boundary, it is clear that the

boundary eventually stabilizes as s increases. The method developed by Ning and Tsung [8]

finds a suitable boundary but requires the use of artificial outliers. Instead of implementing

their method directly, we approximate their choice of s with a differencing approach. We

observed that Ning and Tsung’s [8] method located the (approximate) inflection point on

the curve of the number of support vectors vs. s as shown in Figure 4. We developed a

method to approximate their choice of s as follows:

1. Gather a sample x = x1, ....,xN , of p-variate observations from a process.

2. Let SVs be the number of support vectors found for x using SVDD for bandwidth

s = 1, ..., 500.

3. Smooth the consecutive values of SVs using a moving average with a window of 2

calculating ¯SVs = SVs+SVs+1

2 for s = 1, ..., 499

4. Compute the first differences of the ¯SVs values: Dr = | ¯SVs+1 − ¯SVs| for s = 1, ..., 498

5. The value of Dr that represents the first in the sequence such that Dr < δ (where δ

is some nominal value) is the chosen value of s.

We refer to this method as the Ning and Tsung Approximation (NTA). Figure 4 displays

the choice of s by the NTA method as well as the Khazai et al. [7] method (see Equation 3),

labeled IEEE in Figure 4, for N=100 samples drawn from Np(0, I) at various dimensions, p.

One particular advantage of the NTA method is it can be used for data of any dimension.

We compared our simulation results to those for the same case from Ning and Tsung [8] and

for the case with an in-control reference sample of Np(0, I) with p = 2 and N = 500 and
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Figure 4: Comparison of the different bandwidth methods choice of s for N = 100 samples
from N(0, 1) data for different dimensions.

using an α = 0.01 they reported an ARL0=53.05 for what seems to be a single in-control

reference sample. We found under the same conditions for 100 reference samples the average

ARL0=66.259 (see Table 8 in the Appendix). Using the approximating function was the

only feasible way to perform the number of necessary simulations to quantify the effect

of sample to sample variability on the k -chart performance when the method of Ning and

Tsung [8] is used to determine s.

We compare the NTA method with three other methods for choosing s which we refer

to as TAX, P and IEEE. The TAX method from Tax and Duin [10] simply uses the rule

that the number of support vectors (SV) divided by N, (#SV/N), is an upper bound on

the Type I error rate. As suggested by Tax and Duin [10], we set the value of s such that

the quantity #SV/N is equal to the chosen value of the Type I error rate and then iterate

through different values of s until the appropriate number of support vectors is found. In

some cases the appropriate number of support vectors will be large because N is not large

enough to accommodate the desired Type I error rate. The smallest number of possible

support vectors to describe any data for which p ≥ 2. Thus if N = 100 the smallest Type

I error rate that can possibly be obtained is 0.02. To obtain a Type I error rate of 0.01, at
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least N = 200 is required, if the boundary is a perfect sphere. In our simulations we did

not run the cases where the desired value of the Type I error rate could not be obtained.

You will also see that sometimes even though N was apparently large enough relative to

the desired Type I error rate, the boundary produced was clearly too large to be of use.

Khazai et al. [7] suggested taking the square root of the sum of the variance of each

variable in the sample data as the estimate of s, as shown in equation (3). Lastly, we

simply choose the value of s as the number of dimensions of the data, p. We refer to this

method as P in the results.

4.1 Phase I Simulation Protocol

To compare the four methods for choosing s (NTA, TAX, IEEE and P) we varied the

following parameters for the the in-control Phase I data:

• Distribution: Np(0,Σ) or LogNormalp(0,Σ) such that σii = σjj for all i, j = 1, ..., p.

• Dimension: p=2, 15

• Type I Error Rate: α=0.01, 0.1

• Sample Size: N=100, 250, 500, 1000

• Correlation: σij=0, 0.5 for all i, j = 1, ..., p, i 6= j.

We compared 48 different simulation scenarios for each of the four methods for selecting

s. For each of the 48 different combinations we generated m = 100 different Phase I sam-

ples to assess sample to sample performance. We quantified Phase I performance with False

Alarm Probability (FAP) computed as the number of in-control points deemed out-of-control
N . Com-

plete tabulated results can be seen Tables 1-6 in the Appendix. Figures 5 and 6 plot the

FAP for each set if m = 100 in-control Phase I samples for α=0.01 and 0.1, respectively. For

both figures we see improvement in the accuracy and precision of the FAP as N increases

and better performance for p = 2 than p = 15 for a given sample size. We see that the

12



(a) p-variate Normal Distribution

(b) p-variate LogNormal Distribution

Figure 5: FAP for α = 0.01 for each bandwidth method. Note the dashed line is the targeted
α = 0.01.
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(a) p-variate Normal Distribution

(b) p-variate LogNormal Distribution

Figure 6: FAP for α = 0.1 for each bandwidth method. Note the dashed line is the targeted
α = 0.1.
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Figure 7: FAP for Np(0,Σ) where N=1000, p=2, α = 0.1 where σii=2, 5 and 10 for each s
method.

TAX and the NTA method perform similarly and that the IEEE method tends to overfit

the data leading to a high FAP. Simply choosing p as the value of s works better when

p = 15. Unsurprisingly, the larger Type I error probability results in better performance.

The FAP does not seem to differ between the Normal and Lognormal distributions and

improves slightly with correlation present. We speculate that the addition of correlation

results in a lower volume boundary, which is better “filled” by the N observations.

The reference samples used to generate the simulation results shown in Figures 5 and 6

have unit variance. The performance of the P method for choosing s would be ill-advised

if the generated data do not have unit variance. Figure 7 shows FAP results for N=1000,

p=2 with r=0 and α=0.1 for Np(0,Σ) for values of σii=2, 5, and 10. Notice that as the

variance increases the performance of the P method deteriorates. Thus it is important to

standardize the data when selecting s according to s = p. The other methods have similar
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performance for σ=2 and 5. For σ=10, the IEEE method seems unchanged and the NTA

and TAX methods show more variability.

4.2 Contaminated Reference Sample Results

Usually it is unknown if a Phase I reference sample is in-control or out-of-control. For this

reason, we assessed the performance of the k -chart, when the reference sample is contami-

nated with some out-of-control observations.

For the in-control sample, we generated observations using a multivariate normal distri-

bution with mean vector µ0 = 0 and covariance matrix Σ0 = I,. To generate out-of-control

data, the mean vector is shifted µ1 = µ0 + δ, where δ is the shift according to the non-

centrality parameter γ =
√
δTΣ−1

0 δ. We varied the shift size using γ = 1, 2 for a small

shift, λ = 4, 6 for a medium shift, and λ = 10, 20 for a large shift. For any given shift

γ, we randomly selected only one dimension of p to incur the shift. For example if the

first dimension is randomly selected to be shifted, then µ1 = [µ1 + δ µ2 µ3 ... µp]. The

simulations were run using the following parameters.

• Distribution: Np(0,Σ) where Σ = I

• Shift Size: λ = 1, 2, 4, 6, 10, 20

• Dimension: p=2, 15

• Sample Size: N=100, 500

• Correlation: σij = 0

• Type I Error Rate: α=0.01, 0.1

• Percent Contamination: 5, 10, 25

In general, none of the bandwidth methods produced boundaries that were able to detect

the out-of-control data. Figure 8 gives and example of the typical boundary found using
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the different methods. Here the out-of-control points are shown as circles. It is clear that

none of the boundaries effectively identify the out-of-control observations. The results of

the simulation further this conclusion. For example, when the percent of out-of-control

points in the reference sample was set to be 25% the mean Type II error for all s methods,

for any value of N , was about 25%. This implies that most of the outliers were deemed

in-control. Complete simulation results for contaminated cases are available from the first

author by request.

5 Phase II Simulation

Assuming there is an in-control reference sample, we conducted Phase II simulations using

the same methods for finding s. For each of 100 in-control reference samples, we calculated

the ARL0 for 1000 Phase II samples and report the mean ARL0 for each of the 100 Phase

I samples. The simulations were conducted as follows:

1. Take a sample of N in-control observations from the specified distribution.

2. For a set α, p and correlation, find the value of s using one of the four stated methods

and establish a control limit.

3. Sample observations from the specified distribution and compare to the boundary.

Repeat until an observation falls outside of the control limit, record the order of that

observation.

4. Repeat step (3) 1000 times and calculate the ARL0 conditioned on the reference

sample.

5. Repeat steps (1)-(4) for each of 100 Phase I samples.

The following were used in the above simulations:

• Distribution: Np(0,Σ) or LogNormalp(0,Σ) such that σii = σjj for all i, j = 1, ..., p.
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(a) IEEE, s = 1.69, Type I = 0.0337, Type II = 0.0360

(b) TAX, s = 12, Type I = 0.0274, Type II = 0.0260

(c) NTA, s = 6, Type I = 0.0316, Type II = 0.0300

(d) P, s = 2, Type I = 0.0358, Type II = 0.0360

Figure 8: Boundaries for multivariate Np(0,Σ), with p = 2, Σ = I, α = 0.05, r = 0,
N = 500 under data infected with 5% out-of-control points, γ = 20.
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• Dimension: p=2, 15

• Type I Error Rate: α=0.01, 0.1

• Sample Size: N=100, 250, 500, 1000

• Correlation: σij=0, 0.5 for all i, j = 1, ..., p, i 6= j.

Figures 9a and b show the conditioned ARL0 values for α = 0.01. For p=2 and smaller

values of N the TAX method produces several large outliers. Figure 10, provides a better

look at the majority of the conditional ARL0 values. Disturbingly, the results indicate that

the majority of the conditional ARL0 values for most cases fall below the desired value of

100. Thus, the k -chart, regardless of the method for searching s would incur numerous

false alarms in practice. None of the bandwidth methods achieve the targeted ARL0 of

100, however performance is improved for larger values of N . It is interesting to note that

performance seems to be more consistent, but still below target, when p=15. Table 8 in the

Appendix gives the mean and standard deviation of the conditional ARL0 values (AARL

and SDARL). The TAX method has the best AARL but the largest SDARL in most cases.

The NTA method produces slightly lower AARL values with smaller SDARL values than

the TAX method, but the variation is still not acceptable. The P method works best when

p=15.

Although ARL values are usually desired to be large in practice we consider the case with

α = 0.1 (ARL=10) for the sake of completeness. Figures 11a and b show that the Phase

II performance is more consistent when α=0.1, but that the TAX method still produces

large outliers when p=2 for the bivariate Normal Distribution. Figure 12 gives a better idea

of the variability of the majority of the ARL0 values when the data generated is from the

Normal distribution. Table 7 in the Appendix show the the AARL and SDARL values. The

TAX and NTA bandwidth methods produce AARL values closer to the target of 10, with

the NTA method having smaller SDARL when p=2. The method of choosing s=p works

best when N > 100, has the less variation than that of the TAX and NTA methods, but
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(a) p-variate Normal Distribution

(b) p-variate LogNormal Distribution

Figure 9: ARL0 for α = 0.01 for each bandwidth method. Note the dashed line is the
targeted ARL0 = 100
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(a) p-variate Normal Distribution

(b) p-variate LogNormal Distribution

Figure 10: Zoom of Figure 9. ARL0 for α = 0.01 for each bandwidth method. Note the
dashed line is the targeted ARL0 = 100
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(a) p-variate Normal Distribution

(b) p-variate LogNormal Distribution

Figure 11: ARL0 for α = 0.1 for each bandwidth method. Note the dashed line is the
targeted ARL0 = 10

22



Figure 12: Zoom in of Figure 11a. ARL0 for α = 0.1 for each bandwidth method for samples
from the p-variate Normal distribution. Note the dashed line is the targeted ARL0 = 10

still produce charts with unacceptable in-control performance.

6 Recommendations

We have reviewed four different methods for choosing the bandwidth parameter, s, when the

k -chart is designed using the Gaussian kernel function. When used in Phase I, all methods

of determining s produce charts with FAP values near (or below) the desired Type I error

rate when all observations are in-control. However, we found the chart to be incapable

of distinguishing in-control and out-of-control observations when the reference sample is

contaminated. Thus the use of the k -chart as a Phase I tool in its present form is not

recommended.

In all cases studied, regardless of the method used for selecting s, the Phase II perfor-

mance of the k -chart was unacceptable. In most cases, a majority of the k -charts produced

ARL values below the desired level. This indicates that in practice, practitioners are likely
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to experience a large number of false alarms when using the k -chart in this form.

If using the k -chart, we would recommend using the NTA method or the method of

Ning and Tsung [8] to choose the bandwidth parameter, s, in lower dimensions and the P

method, of setting s = P , in higher dimensions. If one wishes to simply use the dimension,

p as a choice of s, data should be transformed to unit variance prior finding the boundary.

The IEEE method, while simple and robust to differing variances tends to overfit data and

we would not recommend this method unless N is much greater than p as it only had

close to acceptable performance when N=1000 and p=2. The TAX method has similar

performance to the NTA method when correlation was present and N is large; however,

there can be cases where the initial boundary is too large, to produce desired results thus

caution must be taken when implementing the TAX method. We would also like to point

out the large standard deviations of the the ARL0 values for α = 0.01 when the N to p

ratio is small. In its current form, the k -chart performance is unacceptable for both Phase

I and II monitoring.

The main problems with the k -chart are that the boundaries overfit for Phase II and

cannot distinguish in- and out-of-control points in Phase I. Future research is necessary to

find other chart designs that might improve performance of the k -chart. For example, work

should be done to find a k -chart design that is less dependent on the choice of s, is more

robust to outliers and requires a lower sample size. We do believe there is a lot of potential

in one-class classification applications in Statistical Process Monitoring.
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Table 1: Normal FAP

IEEE TAX NTA P

r α p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 0.063 0.023 0.010 0.110 0.017 0.006 0.000 0.030 0.023 0.007 0.010 0.040 0.054 0.010 0.030 0.080
2 250 0.038 0.004 0.028 0.048 0.009 0.003 0.004 0.016 0.010 0.003 0.004 0.020 0.025 0.004 0.016 0.032
2 500 0.022 0.002 0.016 0.028 0.010 0.001 0.006 0.012 0.010 0.001 0.006 0.012 0.014 0.002 0.010 0.018
2 1000 0.012 0.001 0.010 0.017 0.010 0.001 0.005 0.011 0.010 0.001 0.008 0.012 0.011 0.001 0.008 0.014
15 100 0.162 0.042 0.070 0.300 0.037 0.033 0.000 0.140 0.050 0.038 0.000 0.160 0.037 0.031 0.000 0.130
15 250 0.097 0.026 0.044 0.200 0.019 0.014 0.000 0.060 0.017 0.013 0.000 0.052 0.016 0.013 0.000 0.052
15 500 0.066 0.011 0.040 0.096 0.011 0.005 0.000 0.028 0.012 0.007 0.000 0.034 0.011 0.006 0.000 0.028
15 1000 0.043 0.007 0.027 0.061 0.010 0.003 0.004 0.018 0.010 0.002 0.004 0.018 0.010 0.003 0.004 0.020

0 0.1 2 100 0.096 0.020 0.030 0.140 0.098 0.010 0.030 0.110 0.099 0.008 0.050 0.110 0.101 0.009 0.080 0.120
2 250 0.102 0.005 0.092 0.116 0.098 0.011 0.040 0.104 0.100 0.002 0.096 0.104 0.101 0.004 0.092 0.108
2 500 0.101 0.002 0.094 0.106 0.099 0.009 0.034 0.102 0.099 0.006 0.042 0.104 0.100 0.002 0.096 0.104
2 1000 0.100 0.001 0.098 0.103 0.099 0.007 0.034 0.102 0.099 0.007 0.034 0.102 0.100 0.001 0.098 0.102
15 100 0.153 0.037 0.070 0.260 0.092 0.027 0.040 0.170 0.086 0.028 0.020 0.160 0.092 0.027 0.030 0.170
15 250 0.104 0.020 0.056 0.148 0.098 0.009 0.076 0.120 0.095 0.010 0.068 0.120 0.097 0.009 0.076 0.128
15 500 0.097 0.009 0.080 0.116 0.098 0.004 0.090 0.108 0.098 0.004 0.090 0.108 0.099 0.004 0.092 0.108
15 1000 0.097 0.004 0.084 0.109 0.099 0.001 0.096 0.102 0.099 0.002 0.096 0.103 0.099 0.002 0.095 0.104

0.5 0.01 2 100 0.065 0.020 0.010 0.120 0.012 0.007 0.000 0.020 0.020 0.007 0.000 0.040 0.045 0.008 0.020 0.060
2 250 0.036 0.004 0.024 0.044 0.012 0.002 0.008 0.016 0.010 0.003 0.004 0.020 0.024 0.004 0.016 0.036
2 500 0.020 0.002 0.014 0.026 0.010 0.001 0.004 0.012 0.010 0.002 0.004 0.014 0.013 0.002 0.008 0.018
2 1000 0.012 0.001 0.008 0.015 0.009 0.002 0.002 0.011 0.010 0.001 0.008 0.011 0.010 0.001 0.008 0.013
15 100 0.124 0.042 0.040 0.260 0.016 0.014 0.000 0.070 0.024 0.020 0.000 0.100 0.015 0.011 0.000 0.050
15 250 0.078 0.021 0.032 0.144 0.010 0.005 0.000 0.024 0.013 0.009 0.000 0.048 0.010 0.004 0.000 0.020
15 500 0.050 0.011 0.016 0.088 0.010 0.002 0.004 0.018 0.011 0.004 0.004 0.026 0.010 0.002 0.004 0.014
15 1000 0.033 0.005 0.019 0.043 0.010 0.001 0.003 0.015 0.010 0.002 0.007 0.018 0.010 0.001 0.008 0.013

0.5 0.1 2 100 0.098 0.018 0.040 0.150 0.093 0.019 0.030 0.110 0.098 0.011 0.030 0.110 0.102 0.008 0.090 0.120
2 250 0.100 0.004 0.092 0.108 0.099 0.006 0.040 0.104 0.099 0.007 0.036 0.104 0.101 0.004 0.092 0.116
2 500 0.100 0.002 0.094 0.104 0.098 0.010 0.032 0.102 0.098 0.011 0.034 0.104 0.100 0.002 0.098 0.104
2 1000 0.100 0.001 0.098 0.103 0.099 0.007 0.034 0.102 0.099 0.007 0.034 0.102 0.100 0.001 0.098 0.102
15 100 0.125 0.042 0.040 0.260 0.093 0.010 0.070 0.110 0.091 0.012 0.040 0.120 0.093 0.013 0.020 0.120
15 250 0.101 0.018 0.060 0.148 0.098 0.004 0.088 0.108 0.098 0.004 0.088 0.108 0.099 0.004 0.088 0.108
15 500 0.097 0.008 0.072 0.118 0.099 0.007 0.036 0.104 0.099 0.002 0.094 0.104 0.098 0.007 0.036 0.104
15 1000 0.098 0.004 0.089 0.106 0.100 0.001 0.098 0.102 0.100 0.001 0.097 0.102 0.099 0.006 0.037 0.102
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Table 2: LogNormal FAP

IEEE TAX NTA P

r α p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 0.070 0.011 0.040 0.100 0.016 0.005 0.010 0.030 0.018 0.008 0.010 0.030 0.046 0.009 0.030 0.070
2 250 0.036 0.005 0.020 0.048 0.008 0.002 0.004 0.012 0.009 0.003 0.004 0.016 0.024 0.004 0.016 0.032
2 500 0.023 0.003 0.016 0.030 0.010 0.001 0.002 0.012 0.010 0.002 0.008 0.016 0.015 0.003 0.008 0.024
2 1000 0.014 0.001 0.011 0.017 0.009 0.002 0.002 0.011 0.010 0.001 0.003 0.012 0.011 0.001 0.007 0.013
15 100 0.089 0.027 0.030 0.160 0.032 0.020 0.000 0.080 0.034 0.017 0.000 0.080 0.029 0.019 0.000 0.080
15 250 0.064 0.014 0.040 0.100 0.014 0.006 0.004 0.032 0.018 0.006 0.008 0.044 0.013 0.006 0.000 0.032
15 500 0.051 0.010 0.032 0.078 0.011 0.003 0.004 0.016 0.011 0.003 0.002 0.022 0.010 0.003 0.004 0.018
15 1000 0.040 0.006 0.022 0.065 0.010 0.001 0.007 0.014 0.010 0.001 0.007 0.014 0.010 0.001 0.007 0.013

0 0.1 2 100 0.100 0.009 0.080 0.130 0.091 0.024 0.010 0.110 0.098 0.014 0.010 0.110 0.100 0.008 0.080 0.120
2 250 0.100 0.004 0.088 0.112 0.097 0.014 0.024 0.104 0.098 0.011 0.024 0.104 0.099 0.003 0.092 0.108
2 500 0.100 0.002 0.094 0.104 0.097 0.015 0.018 0.102 0.098 0.012 0.024 0.102 0.100 0.002 0.096 0.104
2 1000 0.100 0.001 0.098 0.103 0.095 0.018 0.020 0.101 0.096 0.016 0.024 0.101 0.100 0.001 0.098 0.102
15 100 0.089 0.027 0.030 0.160 0.092 0.015 0.060 0.130 0.093 0.017 0.050 0.150 0.096 0.014 0.060 0.130
15 250 0.078 0.014 0.044 0.116 0.097 0.005 0.084 0.108 0.096 0.005 0.084 0.108 0.097 0.005 0.084 0.108
15 500 0.087 0.009 0.064 0.110 0.099 0.002 0.092 0.106 0.099 0.003 0.092 0.106 0.099 0.002 0.092 0.106
15 1000 0.094 0.004 0.085 0.103 0.100 0.001 0.097 0.105 0.099 0.001 0.095 0.102 0.100 0.001 0.098 0.104

0.5 0.01 2 100 0.067 0.011 0.040 0.090 0.015 0.006 0.000 0.030 0.020 0.007 0.000 0.030 0.047 0.011 0.020 0.080
2 250 0.037 0.005 0.024 0.048 0.010 0.003 0.004 0.016 0.009 0.003 0.004 0.016 0.025 0.004 0.016 0.036
2 500 0.023 0.002 0.016 0.030 0.010 0.002 0.002 0.012 0.010 0.001 0.006 0.014 0.015 0.002 0.010 0.020
2 1000 0.014 0.001 0.010 0.017 0.009 0.003 0.002 0.011 0.010 0.001 0.003 0.011 0.011 0.001 0.008 0.014
15 100 0.060 0.027 0.020 0.170 0.018 0.012 0.000 0.050 0.027 0.015 0.000 0.070 0.017 0.012 0.000 0.050
15 250 0.041 0.011 0.012 0.076 0.011 0.006 0.000 0.028 0.015 0.006 0.004 0.036 0.010 0.005 0.000 0.024
15 500 0.031 0.007 0.012 0.060 0.011 0.003 0.004 0.020 0.011 0.003 0.006 0.020 0.010 0.002 0.004 0.016
15 1000 0.023 0.005 0.013 0.035 0.010 0.001 0.003 0.014 0.010 0.001 0.007 0.014 0.010 0.001 0.008 0.014

0.5 0.1 2 100 0.103 0.011 0.080 0.140 0.087 0.029 0.010 0.110 0.098 0.014 0.030 0.110 0.100 0.008 0.080 0.120
2 250 0.101 0.004 0.092 0.112 0.095 0.018 0.012 0.104 0.098 0.011 0.024 0.104 0.100 0.003 0.096 0.108
2 500 0.100 0.002 0.096 0.106 0.096 0.016 0.022 0.102 0.099 0.007 0.026 0.102 0.100 0.002 0.096 0.104
2 1000 0.100 0.001 0.097 0.102 0.096 0.017 0.021 0.101 0.099 0.008 0.022 0.101 0.100 0.001 0.098 0.101
15 100 0.064 0.025 0.020 0.170 0.094 0.012 0.030 0.120 0.095 0.011 0.070 0.130 0.093 0.014 0.030 0.120
15 250 0.076 0.013 0.048 0.116 0.097 0.008 0.028 0.108 0.097 0.008 0.036 0.108 0.097 0.007 0.036 0.104
15 500 0.090 0.006 0.078 0.104 0.099 0.002 0.092 0.104 0.099 0.002 0.092 0.104 0.098 0.008 0.024 0.102
15 1000 0.095 0.003 0.086 0.103 0.100 0.001 0.098 0.102 0.099 0.007 0.030 0.102 0.100 0.001 0.096 0.102
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Table 3: Normal SV

IEEE TAX NTA P

r α p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 16.41 1.63 12 21 3.00 0.53 2 5 4.23 0.79 3 6 9.91 1.45 7 14
2 250 21.63 2.06 16 27 3.85 0.69 3 6 4.45 0.83 3 7 12.07 1.58 9 19
2 500 25.74 2.45 20 35 6.57 0.57 5 8 7.30 0.88 6 10 13.59 1.48 11 17
2 1000 30.13 2.56 25 35 11.47 0.54 10 13 12.15 0.86 11 14 18.06 1.81 14 22
15 100 39.77 2.64 34 47 10.60 2.02 6 16 12.08 2.33 7 18 10.07 1.88 6 15
15 250 60.29 3.85 51 70 11.77 2.16 7 17 12.86 2.43 7 20 11.28 1.97 7 16
15 500 78.53 3.84 68 94 13.06 2.39 8 20 14.44 2.65 8 21 12.76 2.11 9 20
15 1000 101.40 4.77 90 118 17.33 2.08 13 23 18.55 2.44 14 25 16.96 1.86 13 23

0 0.1 2 100 18.11 1.60 15 22 11.25 0.54 10 13 11.62 0.66 10 13 14.28 1.30 12 18
2 250 33.86 1.63 31 37 26.17 0.60 25 27 26.44 0.62 25 28 29.35 1.19 27 33
2 500 59.29 1.69 55 63 51.08 0.53 50 52 51.48 0.69 50 53 54.15 1.09 52 56
2 1000 109.31 1.64 106 114 101.24 0.62 100 103 101.64 0.84 100 104 104.25 1.12 102 107
15 100 39.77 2.64 34 47 14.74 1.47 12 18 15.66 1.39 13 19 14.56 1.39 12 18
15 250 60.70 3.77 51 70 29.65 1.57 27 34 30.36 1.73 27 35 29.60 1.48 27 33
15 500 84.88 4.15 73 97 54.14 1.41 51 58 54.54 1.49 51 59 54.10 1.29 51 58
15 1000 134.44 4.50 124 147 104.34 1.50 101 110 104.84 1.50 101 110 104.25 1.59 101 111

0.5 0.01 2 100 14.77 1.56 10 18 2.47 0.54 2 4 4.01 1.01 2 6 8.62 1.20 6 12
2 250 18.83 1.93 14 24 4.17 0.45 3 5 4.89 0.90 3 8 11.23 1.29 8 14
2 500 22.22 2.08 18 28 6.30 0.50 5 7 7.26 0.93 5 10 12.68 1.37 10 16
2 1000 26.01 2.49 21 32 11.06 0.55 10 12 12.08 0.77 11 14 17.37 1.45 15 21
15 100 34.21 2.95 27 42 4.65 1.59 2 9 6.71 2.67 3 16 4.52 1.31 2 9
15 250 49.71 3.79 42 62 5.85 1.60 4 11 7.97 3.19 4 16 5.68 1.12 4 8
15 500 61.53 3.83 52 71 7.96 1.57 6 14 9.94 3.32 6 19 7.78 1.09 6 10
15 1000 76.94 4.23 67 87 13.22 1.84 10 19 14.84 3.30 11 26 12.74 1.11 11 16

0.5 0.1 2 100 17.07 1.42 14 21 10.95 0.48 10 12 11.42 0.65 10 13 13.56 1.20 12 17
2 250 32.33 1.54 28 36 26.11 0.51 25 27 26.35 0.66 25 28 28.52 1.08 26 31
2 500 57.22 1.45 54 61 51.03 0.54 50 53 51.38 0.63 50 53 53.42 1.05 52 57
2 1000 109.31 1.64 106 114 101.24 0.62 100 103 101.64 0.84 100 104 104.25 1.12 102 107
15 100 34.21 2.95 27 42 12.01 1.01 10 15 12.78 1.46 10 18 12.04 1.05 10 15
15 250 51.39 3.60 44 62 27.11 0.91 26 30 27.75 1.24 26 32 27.07 0.90 26 30
15 500 74.43 3.46 65 84 52.00 1.04 50 57 52.67 1.47 51 57 52.05 0.86 50 54
15 1000 123.92 3.92 114 132 102.01 0.97 100 106 102.73 1.39 101 108 101.89 0.92 100 105
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Table 4: LogNormal SV

IEEE TAX NTA P

r α p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 13.70 1.88 9 20 3.03 0.22 2 4 3.63 1.06 3 9 9.44 1.31 7 13
2 250 18.97 2.11 13 24 3.25 0.48 3 5 3.80 1.10 3 7 12.49 1.76 8 16
2 500 23.69 1.81 20 28 6.10 0.33 5 7 7.17 1.39 6 11 15.27 2.10 12 21
2 1000 29.33 2.31 25 36 11.23 0.65 10 12 12.24 1.16 10 16 19.34 2.05 15 26
15 100 34.08 2.37 28 39 7.74 1.44 5 11 9.34 1.85 6 14 7.47 1.32 5 11
15 250 56.42 3.51 47 63 8.80 1.79 5 14 10.24 2.13 6 18 8.35 1.36 5 12
15 500 82.81 4.23 72 94 10.08 1.64 7 14 11.27 2.15 7 17 9.92 1.39 7 14
15 1000 122.59 4.70 105 133 14.32 1.52 12 19 15.20 1.90 12 21 14.03 1.33 12 18

0 0.1 2 100 15.61 1.45 13 20 11.04 0.62 10 12 11.39 0.68 10 13 13.33 1.01 12 16
2 250 30.75 1.49 27 35 26.08 0.66 25 27 26.16 0.60 25 28 28.32 0.91 27 30
2 500 56.00 1.44 54 59 51.04 0.68 50 53 51.21 0.57 50 52 53.30 1.13 51 57
2 1000 106.03 1.25 103 110 101.06 0.63 100 102 101.18 0.63 100 103 103.40 0.99 101 106
15 100 34.08 2.37 28 39 12.90 1.14 11 16 13.57 1.36 10 18 12.80 1.24 10 17
15 250 56.39 3.49 47 63 27.59 1.13 26 31 27.85 1.28 26 32 27.56 1.11 26 31
15 500 84.19 4.21 75 94 52.83 1.20 51 56 53.04 1.20 51 56 52.76 1.18 51 56
15 1000 135.38 4.04 124 145 102.82 1.21 101 107 102.95 1.14 101 106 102.78 1.25 101 107

0.5 0.01 2 100 13.32 1.68 8 16 2.77 0.49 2 4 3.71 0.82 2 6 8.95 1.68 5 13
2 250 18.58 2.06 13 24 3.62 0.69 3 5 3.97 0.90 3 7 12.63 1.74 9 17
2 500 24.57 1.82 20 29 6.26 0.58 5 7 7.03 1.05 6 10 15.47 2.06 11 21
2 1000 31.63 2.65 26 38 11.19 0.72 10 12 11.97 0.94 10 15 19.99 2.46 15 28
15 100 27.35 3.16 16 35 5.81 1.53 3 11 7.22 2.03 4 13 5.32 1.15 3 8
15 250 45.56 3.26 37 53 6.95 1.82 3 11 8.86 2.31 4 15 6.71 1.37 4 10
15 500 67.24 4.86 45 79 9.36 1.74 6 15 10.67 2.17 7 17 8.99 1.11 7 12
15 1000 100.51 5.45 86 111 13.98 1.61 10 18 15.11 1.93 12 22 13.86 1.17 12 18

0.5 0.1 2 100 15.50 1.62 11 20 10.96 0.58 10 12 11.29 0.67 10 13 13.03 1.06 11 17
2 250 30.40 1.27 28 34 25.96 0.58 25 27 26.18 0.58 25 27 28.11 0.95 26 30
2 500 55.58 1.53 52 59 51.02 0.59 50 52 51.07 0.64 50 53 53.04 1.01 51 56
2 1000 105.85 1.35 102 110 100.92 0.54 100 102 101.18 0.59 100 102 103.08 1.02 101 106
15 100 27.36 3.13 17 35 12.10 0.92 10 16 12.64 1.05 11 16 12.04 1.00 10 15
15 250 45.86 3.20 39 53 26.97 0.95 25 30 27.17 0.92 25 29 26.93 0.98 25 30
15 500 71.55 3.92 60 80 52.05 1.03 50 56 52.23 1.11 50 57 51.98 0.83 50 54
15 1000 120.50 3.79 111 132 101.92 0.92 100 105 102.17 1.04 100 105 101.84 0.90 100 105
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Table 5: Normal s

IEEE TAX NTA

r alpha p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 1.423 0.072 1.262 1.642 12.25 0.61 12 15 5.040 1.333 4 12
2 250 1.418 0.045 1.277 1.522 12.20 0.57 12 15 5.690 1.662 4 12
2 500 1.416 0.031 1.326 1.496 12.35 0.85 9 16 5.250 1.872 3 14
2 1000 1.417 0.022 1.361 1.481 12.33 1.04 6 16 5.310 1.952 3 13
15 100 3.881 0.074 3.687 4.055 13.75 1.62 12 19 10.270 1.797 7 15
15 250 3.876 0.047 3.732 3.975 14.13 1.85 12 21 11.150 1.794 7 17
15 500 3.876 0.034 3.796 3.953 14.75 2.11 12 21 11.800 1.781 8 17
15 1000 3.874 0.023 3.818 3.934 14.35 1.99 12 20 11.420 1.810 8 17

0 0.1 2 100 1.423 0.072 1.262 1.642 12.25 0.61 12 15 5.040 1.333 4 12
2 250 1.418 0.045 1.277 1.522 12.20 0.57 12 15 5.690 1.662 4 12
2 500 1.416 0.031 1.326 1.496 12.35 0.85 9 16 5.250 1.872 3 14
2 1000 1.417 0.022 1.361 1.481 12.33 1.04 6 16 5.310 1.952 3 13
15 100 3.881 0.074 3.687 4.055 13.75 1.62 12 19 10.270 1.797 7 15
15 250 3.876 0.047 3.732 3.975 14.13 1.85 12 21 11.150 1.794 7 17
15 500 3.876 0.034 3.796 3.953 14.75 2.11 12 21 11.800 1.781 8 17
15 1000 3.874 0.023 3.818 3.934 14.35 1.99 12 20 11.420 1.810 8 17

0.5 0.01 2 100 1.422 0.081 1.226 1.644 12.10 0.44 12 14 4.840 1.117 3 9
2 250 1.418 0.051 1.283 1.553 12.08 0.34 12 14 5.170 1.240 4 11
2 500 1.417 0.036 1.316 1.497 12.27 1.17 6 16 5.060 1.332 4 12
2 1000 1.417 0.026 1.343 1.469 12.05 1.32 7 16 5.390 1.693 3 11
15 100 3.893 0.154 3.527 4.285 15.42 1.89 12 21 11.960 2.365 7 18
15 250 3.871 0.084 3.709 4.110 15.70 1.77 12 19 12.440 2.071 8 18
15 500 3.876 0.073 3.718 4.078 15.72 1.72 12 20 12.660 2.185 8 18
15 1000 3.877 0.051 3.739 3.988 15.40 1.98 12 20 12.620 2.201 8 18

0.5 0.1 2 100 1.422 0.081 1.226 1.644 12.10 0.44 12 14 4.840 1.117 3 9
2 250 1.418 0.051 1.283 1.553 12.08 0.34 12 14 5.170 1.240 4 11
2 500 1.417 0.036 1.316 1.497 12.27 1.17 6 16 5.060 1.332 4 12
2 1000 1.417 0.022 1.361 1.481 12.33 1.04 6 16 5.310 1.952 3 13
15 100 3.893 0.154 3.527 4.285 15.42 1.89 12 21 11.960 2.365 7 18
15 250 3.871 0.084 3.709 4.110 15.70 1.77 12 19 12.440 2.071 8 18
15 500 3.876 0.073 3.718 4.078 15.72 1.72 12 20 12.660 2.185 8 18
15 1000 3.877 0.051 3.739 3.988 15.40 1.98 12 20 12.620 2.201 8 18
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Table 6: LogNormal s

IEEE TAX NTA

r α p N Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max

0 0.01 2 100 1.429 0.182 1.099 2.106 12.080 0.394 12 15 5.090 1.223 3 10
2 250 1.419 0.128 1.202 1.877 12.180 0.609 12 16 5.970 1.521 4 13
2 500 1.408 0.092 1.182 1.633 12.080 0.506 9 14 5.670 1.371 3 13
2 1000 1.418 0.075 1.252 1.616 11.890 1.497 7 18 5.570 1.610 3 12
15 100 3.891 0.236 3.377 4.515 13.960 1.891 12 21 10.130 1.555 7 14
15 250 3.877 0.148 3.529 4.362 14.490 1.789 12 20 11.250 1.772 8 18
15 500 3.882 0.115 3.645 4.365 14.910 2.050 12 21 12.080 1.745 9 18
15 1000 3.879 0.070 3.727 4.128 14.300 1.834 12 20 11.850 1.572 9 17

0 0.1 2 100 1.429 0.182 1.099 2.106 12.080 0.394 12 15 5.090 1.223 3 10
2 250 1.419 0.128 1.202 1.877 12.180 0.609 12 16 5.970 1.521 4 13
2 500 1.418 0.100 1.224 1.742 12.140 0.551 11 15 5.720 1.939 3 14
2 1000 1.418 0.075 1.252 1.616 11.890 1.497 7 18 5.570 1.610 3 12
15 100 3.891 0.236 3.377 4.515 13.960 1.891 12 21 10.130 1.555 7 14
15 250 3.877 0.148 3.529 4.362 14.490 1.789 12 20 11.250 1.772 8 18
15 500 3.882 0.115 3.645 4.365 14.910 2.050 12 21 12.080 1.745 9 18
15 1000 3.879 0.070 3.727 4.128 14.300 1.834 12 20 11.850 1.572 9 17

0.5 0.01 2 100 1.423 0.220 1.038 2.176 12.110 0.424 12 15 5.080 1.361 3 12
2 250 1.423 0.144 1.181 1.828 12.410 0.830 12 16 5.830 1.415 4 11
2 500 1.416 0.106 1.185 1.810 12.260 1.143 8 16 6.020 2.030 4 14
2 1000 1.409 0.080 1.213 1.650 11.980 1.463 6 16 5.920 1.704 4 12
15 100 3.901 0.418 3.134 5.221 13.780 1.667 12 18 10.480 1.720 7 15
15 250 3.837 0.230 3.288 4.640 15.330 1.985 12 20 11.630 1.963 9 17
15 500 3.856 0.224 3.440 5.313 15.270 2.201 12 21 12.490 1.789 9 17
15 1000 3.865 0.145 3.549 4.239 15.550 2.467 12 23 12.580 1.597 9 17

0.5 0.1 2 100 1.423 0.220 1.038 2.176 12.110 0.424 12 15 5.080 1.361 3 12
2 250 1.423 0.144 1.181 1.828 12.410 0.830 12 16 5.830 1.415 4 11
2 500 1.416 0.106 1.185 1.810 12.260 1.143 8 16 6.020 2.030 4 14
2 1000 1.409 0.080 1.213 1.650 11.980 1.463 6 16 5.920 1.704 4 12
15 100 3.901 0.418 3.134 5.221 13.780 1.667 12 18 10.480 1.720 7 15
15 250 3.837 0.230 3.288 4.640 15.330 1.985 12 20 11.630 1.963 9 17
15 500 3.856 0.224 3.440 5.313 15.270 2.201 12 21 12.490 1.789 9 17
15 1000 3.865 0.145 3.549 4.239 15.550 2.467 12 23 12.580 1.597 9 17
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Table 7: Mean and standard deviation of ARL0 for α = 0.1 for each of 100 Phase I samples.

P TAX NTA IEEE

Distribution r p N Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Lognormal 0 2 100 7.79 2.781 11.677 8.38 10.077 4.167 6.632 2.149
2 250 9.162 2.012 10.079 2.34 9.909 2.359 8.368 1.836
2 500 9.383 1.629 9.707 2.099 9.855 1.691 8.986 1.507
2 1000 9.926 1.317 10.032 1.134 10.073 1.069 9.596 1.562
15 100 8.264 3.265 8.136 3.192 7.726 2.792 3.022 0.508
15 250 9.121 1.844 8.993 1.952 8.89 1.886 4.45 0.624
15 500 9.49 1.895 9.438 1.924 9.394 1.898 5.926 0.678
15 1000 9.866 1.261 9.803 1.28 9.803 1.32 7.371 0.886

0.5 2 100 7.816 2.719 10.64 4.831 9.917 3.642 6.69 2.509
2 250 9.058 1.95 10.024 2.464 9.926 2.413 8.238 1.861
2 500 9.33 1.699 9.861 2.239 9.733 2.177 9.088 1.219
2 1000 9.834 1.403 10.076 1.036 9.959 1.318 9.699 1.051
15 100 8.488 3.247 8.411 2.923 7.905 2.818 3.826 0.762
15 250 9.488 2.755 9.552 2.755 9.323 2.724 5.458 0.82
15 500 9.479 2.166 9.509 2.201 9.415 2.076 6.996 1.013
15 1000 9.924 1.326 9.957 1.434 9.849 1.354 8.35 0.831

Normal 0 2 100 7.397 2.398 39.49 173.5 9.41 4.298 5.784 1.652
2 250 8.946 1.581 10.077 2.277 9.905 2.094 7.731 1.312
2 500 9.311 1.747 9.877 2.001 9.704 2.098 8.614 1.284
2 1000 9.688 1.56 10.043 1.57 10.066 1.456 9.345 1.097
15 100 7.153 2.53 7.074 2.488 6.863 2.101 2.565 0.296
15 250 8.433 1.919 8.417 1.898 8.308 1.644 4.177 0.445
15 500 9.361 1.862 9.355 1.833 9.298 1.837 5.997 0.62
15 1000 9.625 1.203 9.568 1.194 9.562 1.219 7.483 0.721

0.5 2 100 7.449 2.343 12.302 27.111 9.237 3.785 6.297 1.656
2 250 9.187 1.611 9.853 2.553 9.816 2.36 7.922 1.489
2 500 9.525 1.589 9.89 1.977 9.762 2.205 8.801 1.441
2 1000 9.882 1.499 9.818 1.596 9.925 1.606 9.567 0.925
15 100 8.848 3.342 8.576 3.362 8.133 3.257 2.993 0.427
15 250 9.495 2.365 9.418 2.346 9.176 2.282 4.958 0.629
15 500 9.769 1.743 9.728 1.763 9.691 1.807 6.755 0.899
15 1000 10.009 1.103 9.985 1.099 9.87 1.051 8.117 0.833

33



Table 8: Mean and standard deviation of ARL0 for α = 0.01 for each of 100 Phase I samples.

P TAX NTA IEEE

Distribution r p N Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Lognormal 0 2 250 19.855 6.813 130.186 375.204 80.564 71.503 13.999 4.455
2 500 30.546 12.43 108.984 87.752 77.431 50.796 19.786 6.392
2 1000 50.212 17.419 93.665 47.742 78.622 33.46 32.776 10.193
15 250 31.794 12.338 30.704 11.684 25.435 8.979 4.491 0.521
15 500 52.531 25.874 52.154 24.637 45.424 20.342 6.081 0.651
15 1000 71.838 30.979 70.515 27.112 63.828 24.462 8.122 1.008

0.5 2 250 19.726 7.767 103.186 146.101 75.116 80.645 13.837 3.823
2 500 29.761 11.165 93.733 68.13 76.401 47.539 18.101 7.26
2 1000 47.471 14.639 87.957 41.782 85.724 36.439 30.163 8.943
15 250 37.136 18.719 39.041 20.919 28.562 12.994 5.534 0.846
15 500 49.269 24.08 50.814 25.135 43.49 22.339 7.479 1.569
15 1000 71.234 26.908 72.093 28.962 64.586 24.905 9.943 1.868

Normal 0 2 250 22.179 8.464 200.545 812.723 62.338 53.085 12.087 3.256
2 500 34.698 14.662 313.366 1162.557 66.259 40.919 19.267 6.156
2 1000 56.448 17.943 89.088 41.126 83.575 38.183 33.816 8.085
15 100 12.01 5.198 11.454 4.434 9.453 3.777 2.572 0.301
15 250 23.308 8.994 23.076 8.472 19.433 7.192 4.203 0.449
15 500 38.901 19.184 40.418 19.189 35.802 16.31 6.512 0.691
15 1000 56.505 22.528 57.288 19.406 53.671 16.343 9.859 0.9

0.5 2 250 23.379 8.277 277.635 927.058 57.263 45.836 13.856 2.847
2 500 36.253 16.466 200.562 803.045 69.36 43.61 22.139 7.012
2 1000 58.212 21.491 87.419 44.084 81.107 33.839 38.478 10.591
15 250 47.729 26.449 51.184 31.633 36.029 21.523 5.148 0.636
15 500 62.854 36.874 65.686 39.657 51.486 32.833 8.281 1.124
15 1000 79.513 36.14 82.248 34.151 72.568 34.706 13.1 1.471
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