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1 Introduction and Motivation

Screening experiments, using plans such as resolution III fractional factorials or Plackett-

Burman designs, are frequently utilized in the early stages of process experimentation. The

goal of screening is to distinguish the few important factors from the many unimportant

ones. However, when there are severe temporal or economic constraints a typical screening

design may require too many resources. Supersaturated designs (SSDs), which use n < k+1

runs to examine k factors, are attractive alternatives. Clearly, SSDs have too few runs to

allow for the estimation of all main effects and thus require the experimenter to rely heavily

on the assumption of effect sparsity.

The origin of SSDs is attributed to Satterthwaite (1959) who proposed random balance

experiments to identify a subset of important factors. Research in this area languished

until the early 1990s when Lin (1993) and Wu (1993) provided two of the early methods

for constructing E(s2)-optimal SSDs. In particular, Lin (1993) constructed SSDs as half-

fractions of Plackett-Burman (PB) designs and Wu (1993) proposed constructing E(s2)-

optimal SSDs by augmenting Hadamard matrices with two-factor interaction columns. See

also Li and Wu (1997) who built E(s2)-optimal SSDs based on a D-optimal design search

by applying columnwise-pairwise algorithms. This method contrasted with Wu (1993) in

that nonorthogonality does not mainly accumulate in the last factors. To date, E(s2) (to

be discussed in section 2) has become the most commonly used criterion for constructing

SSDs.

There are relatively few published case studies of the use of SSDs in practice. For a recent

example (though in a context in which the number of model terms—not the number of

factors—renders the experiment supersaturated), see Scinto et al. (2011). This experiment

studied the effect of more than 70 model terms on the coefficient of friction of engine

motor oil using just 28 runs. Another example, from Holcomb et al. (2007), concerns

experiments to aid in the evaluation of various turbine engine designs. There are 27 factors

of interest, each combination of which specifies an engine design, and the authors compare
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the performance of several designs, including supersaturated designs of 12, 16, and 20 runs.

They conclude that supersaturated designs are unlikely to produce definitive results.

Though an abundance of criteria have been proposed to evaluate SSDs, the power—

defined as the average probability of detecting active effects for a specified set of effect

sizes—when balanced by a controlled Type I error rate is the ultimate measure of a design’s

effectiveness. It also has a straightforward interpretation for experimenters and their spon-

soring organizations. Gilmour (2006) notes that supersaturated “[d]esigns are usually built

to optimize the E(s2) criterion, but this appears to be unrelated to the way in which the

data are analyzed.” Using power to evaluate and recommend a variety of supersaturated

designs is the goal of the present study, and will help relate the design to its method of anal-

ysis and provide guidance to experimenters regarding which supersaturated designs to use.

We calculate power by simulating data from supersaturated experiments and measuring the

proportion of correctly identified active effects.

Marley and Woods (2010) measured power in this way and performed a simulation

study that compared the power and type I error (defined as the proportion of incorrectly

identified active effects) of two types of designs (Bayesian D-optimal and E(s2)-optimal)

and three analysis methods (forward selection, model averaging, and the Dantzig selector)

over three supersaturated experiments of differing sizes and several experimental scenarios.

They concluded that the analysis method had a large impact on power (the Dantzig selector

was best; forward selection using αenter = 0.05 was worst) while the design construction

criteria had no discernible effect. In this article, we focus and enlarge the study of Marley

and Woods along the design selection axis, comparing six different SSD construction criteria

over 12 different experiments. We use similar experimental scenarios as Marley and Woods,

and utilize two versions of forward selection (αenter = 0.05 and AICc as two different

stopping criteria) and the Dantzig selector as analysis methods. Our simulations, based

on design construction criteria that are a mix of established and new approaches, confirm

and deepen the conclusions of Marley and Woods. Even over this larger range of designs

and experiments, no single design construction criteria distinguishes itself as superior to all
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others in regards to power.

The existing SSD construction criteria that we consider in this article are Bayesian D-

optimality (Jones et al., 2008), E(s2)-optimality (Booth and Cox, 1962; Lin, 1993; Wu,

1993), and model-robust (Jones et al., 2009; ?). We also motivate the consideration of

several new criteria, including unbalanced E(s2)-optimality, constrained V ar(s)-optimality,

and a criterion based upon an approximation of effect power. We test these design construc-

tion criteria over a suite of twelve SSDs, ranging from small and slightly supersaturated (e.g.,

11 factors in 10 runs) to medium-sized and more severely supersaturated (e.g., 30 factors

in 16 runs) to larger designs (e.g., 31 factors in 24 runs).

The statistical model we assume is standard. Let D represent the n× k supersaturated

design matrix with k factors with possible levels ±1, and X = [1,D] is the main effects

model matrix where 1 is an n×1 vector of ones. Throughout the paper we consider a linear

main effects model of the form

y = Xβββ + ε, (1)

where y is an n × 1 response vector, βββ is a vector of unknown parameters, and ε is the

error vector with each element independent and E(εi) = 0 and V ar(εi) = σ2. For SSDs,

rank(X) < k + 1. Thus, X′X is singular and no unique least squares estimate for β can

be obtained. This necessitates analysis methods that can exploit the assumed sparsity of

effects (see section 3.1).

The rest of the paper is formatted as follows. Section 2 provides a description of the

various design construction criteria (established and new) that we utilize. Section 3 includes

a simulation study, using both forward selection and the Dantzig selector as SSD analysis

methods, as well as a statistical analysis of the simulation results. We conclude in Section

4 with a discussion and conclusions.
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2 Supersaturated design construction criteria

In this section we review several supersaturated design criteria from the literature. We also

present several new criteria.

2.1 Established criteria

In the introduction to this article, we gave a brief review of some of the early revival in

supersaturated designs and mentioned design construction methods. Here we give several

leading supersaturated design criteria, and also review the methods by which they can be

constructed. The criteria we consider are not exhaustive in the literature (see, for instance,

Allen and Bernshteyn, 2003; Holcomb et al., 2003), but are popular and/or relatively easily

constructed or obtained.

2.1.1 E(s2)-optimality

Booth and Cox (1962) provided the first construction method utilizing the E(s2) criterion,

which minimizes the average of all squared pairwise inner products producing near orthog-

onal designs. Let sij be the (i, j)th element of X′X. Then, the E(s2) criterion selects a

design that minimizes

E(s2) =
2

k(k − 1)

∑
2≤i<j

s2ij (2)

while keeping the design balanced (i.e. each column has the same number of −1 as +1).

Marley and Woods (2010) extended the definition in equation (2) to include the intercept

column of X:

E(s2) =
2

k(k + 1)

∑
1≤i<j

s2ij . (3)

When the design is balanced the two criteria are essentially equivalent because balance
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ensures that the intercept is uncorrelated with all main effects. The balanced E(s2) designs

used in this paper were generated either by the algorithm of Ryan and Bulutoglu (2007)

or by the nonorthogonal array (NOA) algorithm of Nguyen (1996). Both construction

methods employ a secondary criterion of minimizing the maxi<js
2
ij when there are several

designs that achieve the optimal lower bound on E(s2). Again, the E(s2) criterion is the

most commonly used criterion in the literature on SSDs. See, for example, Cheng (1997),

Liu et al. (2007), and Nguyen and Cheng (2008) for several other methods of constructing

E(s2)-optimal supersaturated designs.

2.1.2 Bayesian D-optimality

DuMouchel and Jones (1994) used a Bayesian approach to construct D-optimal designs

with a reduced dependence on a user-specified model. Model terms are categorized as

either primary or potential. Primary terms are assumed to be active, while potential terms

may or may not appear in the true model.

Subsequently, Jones et al. (2008) applied this idea to SSDs, with the assumption that

the intercept is primary and all main effects are potential terms. Under the assumption

that primary terms have a diffuse prior and that potential terms have a prior mean of 0

and variance of τ2, the posterior variance-covariance matrix of β is proportional to (X′X+

K/τ2)−1, where K/τ2 is proportional to the prior variance-covariance matrix for β, and

K =

 0 01×k

0k×1 Ik×k

 . (4)

Jones et al. (2008) suggested finding a supersaturated design that maximizes

φD = |X′X + K/τ2|1/(1+k). (5)

The Bayesian D-optimal designs used in this work were created using JMP software with

6



τ2 = 1. Jones et al. (2008) notes that these designs are relatively insensitive to the choice

of τ2 and use τ2 = 5. This criterion can be used to produce designs with any number of

factors at any run size and does not require the SSD to be balanced.

2.1.3 Model Robust Supersaturated Designs

Jones et al. (2009) developed a method of SSD construction based on the model-robust

approach of Li and Nachtsheim (2000). Jones et al. (2009) begin by specifying a set of

models, Fg, which is composed of all models that include g of the k factors. They then seek

model-robust supersaturated (MRSS) designs which maximize the proportion of estimable

models in Fg. This proportion, called the estimation capacity (ECg), is the primary design

criterion; a secondary criterion (the average D-efficiency across all models in Fg) is also

maximized, subject to ECg being maintained. The authors explore various combinations

of g, n, and k that result in MRSS designs that have 100% estimation capacity. The

columnwise-pairwise exchange algorithm employed in Jones et al. (2009) requires column

balance, unless the number of runs is odd in which case the design is made as balanced as

possible.

For a given k and g, there are r =

(
k

g

)
models in Fg. This quantity can grow large

and becomes a computational bottleneck for Jones et al. (2009). Smucker and Drew (2014)

consider the same supersaturated model space but overcome the computational challenges

by choosing a subset of models from Fg and finding a design robust for the subset. They

show that such designs give up little in terms of robustness with respect to the full model

space, and can be constructed in a small fraction of the time it takes when the full model

space is used.

Since in this article we consider experiments larger than those in Jones et al. (2009), we

utilize an algorithm based on Smucker and Drew (2014) to construct these designs. We test

designs using g = dn/3e and g = d2n/3e, to model varying degrees of effect sparsity. The

algorithm is based upon coordinate exchange (Meyer and Nachtsheim, 1995) and thus does
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not enforce balance.

2.2 New design construction criteria

We now present several original supersaturated design criteria.

2.2.1 Approximate Power

Under standard regression assumptions, power for each effect may be approximated using

the noncentral F-distribution (Mee, 2009) as

π = 1− FDist(Fcrit, ν1, ν2, λ)

where Fcrit = Fquantile(1− α, ν1, ν2), ν1 = 1 is the numerator degrees of freedom, ν2 is the

denominator degrees of freedom and λλλ = (λ0, λ1, . . . , λk)
′ is the (k + 1)-vector of noncen-

trality parameters. Note that π is also a (k+ 1)-vector and corresponds to the approximate

power for each of the model parameters. The ith noncentrality parameter is calculated as

λi =
βi/σ

2

cii

where cii is the ith diagonal element of (X′X+K/τ2)−1. We choose the signal to noise ratio,

βi/σ
2, to be 1 and set τ2 = 5. K is as defined in equation (4). Although other possibilities

exist, we construct approximate power optimal designs by maximizing the minimum power,

πmaximin, where the minimum is taken over all non-intercept parameters.

Older versions of JMP software (e.g. version 8) provide this approximate power calcu-

lation in the custom design platform with ν2 = 1 for SSDs (in JMP 10 the experimenter is

given a choice regarding ν2). Since there are not enough degrees of freedom to estimate all

main effects—let alone to estimate the error term—one approach to a power approximation

is JMP’s old default: Conjure a single degree of freedom for error (i.e. ν2 = 1), with the

implicit reliance on effect sparsity to provide it. However, since effect sparsity is a necessary
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assumption when using a SSD, and Marley and Woods (2010) suggest “[t]he number of runs

should be at least three times the number of active factors,” we consider ν2 = bn− n/3c,

which better reflects the assumption of effect sparsity by supposing that the number of

active effects will be at most dn/3e.

2.2.2 Unbalanced E(s2)-optimal

It has long been assumed in the literature, including by Booth and Cox (1962), that super-

saturated designs should be balanced. However, more recent authors have realized possible

advantages to relaxing this requirement. For instance, Jones et al. (2008) has demonstrated

that relaxing the balance constraint in constructing Bayesian D-optimal designs produces

designs with a lower value of E(s2) than the E(s2)-optimal design. Indeed, Marley and

Woods (2010) extend the definition of E(s2) as in (3) to include the intercept term, and

this is only different from the standard definition when the design is unbalanced.

We use the definition in (3) and find designs that minimize this quantity, without the

effect balance requirement. We construct these SSDs with an algorithm based upon coordi-

nate exchange (see section 2.3). Table 1 compares several balanced E(s2)-optimal designs

with their unbalanced counterparts, in terms of (3), for three supersaturated experiments.

It is clear that lower E(s2) values can be achieved if the balance requirement is removed.

Table 1: Comparison of balanced E(s2)-optimal design values with the unbalanced E(s2)-
optimal for three design sizes, in terms of the criterion defined in (3).

Design Size Type Criterion Value

n = 12, k = 26 Balanced E(s2)-optimal 7.52
Unbalanced E(s2)-optimal 7.18

n = 14, k = 24 Balanced E(s2)-optimal 7.31
Unbalanced E(s2)-optimal 6.88

n = 18, k = 22 Balanced E(s2)-optimal 5.80
Unbalanced E(s2)-optimal 5.52
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2.2.3 Constrained V ar(s)-optimal

The traditional balanced E(s2) criterion was extracted from Booth and Cox (1962). How-

ever, Booth and Cox (1962) did not actually propose E(s2). Instead, they proposed V ar(s)

as a criterion, though they apparently assumed that E(s) = 0, which would imply that

V ar(s) = E(s2). This assumption turns out not to be strictly true, whether in the design

considered by Booth and Cox (1962) or in SSDs more generally.

Because of this, we examine V ar(s) as a criterion in this article. We calculate the

variance of s using

V ar(s) = E(s2)− E(s)2 =
2

k(k + 1)

∑
1≤i<j

s2ij −

 2

k(k + 1)

∑
1≤i<j

sij

2

. (6)

A design chosen to minimize V ar(s) alone would allow very high s values with little or no

variation among them. To prevent this, we propose constrained V ar(s) designs, in which

we minimize V ar(s) subject to a specified E(s2) efficiency. We define E(s2) efficiency for

design D as

E(D) =
E(s2)(D∗)

E(s2)(D)

where D∗ is the E(s2)-optimal design (balanced or unbalanced). After evaluating several

choices, we have specified a lower bound on E(s2)-efficiency of 80%.

2.3 Algorithms

For the designs constructed using the criteria described in Section 2.2, we utilized algo-

rithms based upon coordinate exchange (Meyer and Nachtsheim, 1995). A sketch of our

implementation is as follows, where φ represents one of the supersaturated criteria described

above:

1. Randomly construct an n× k initial supersaturated design.
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2. Iterate through the design coordinate by coordinate. At each coordinate, consider the

effect on φ of multiplying the current value by −1.

(a) If exchanging the current coordinate improves φ, make the exchange.

(b) Otherwise, continue to the next coordinate.

3. Continue iterating through the design until convergence.

In step 2, we update the X′X matrix via the standard rank-1 update formula (see

Meyer and Nachtsheim, 1995). This is a heuristic optimization algorithm which does not

guarantee a globally optimal solution. Thus, each of multiple algorithm tries should begin

from a different initial design and the best chosen. For the designs generated by these

algorithms, we use 100 random starts.

3 Analysis and Simulations

3.1 Analysis Methods

While much has been published on the design of supersaturated experiments, much less has

been written about their analysis (Dejaegher and Vander Heyden, 2008). Two methods of

interest are forward selection and the Dantzig selector.

The Dantzig selector (Candes and Tao, 2007) chooses active factors by solving a very

simple convex program that can be transformed into a linear program. It locates a vector

of estimates, consistent with the data, that minimizes its `1 norm. Phoa et al. (2009) utilize

this procedure for SSDs, and Marley and Woods (2010) find that it is more effective in

terms of power than forward selection or Bayesian variable selection.

When forward selection is used, Type I error rates can be quite high (Westfall et al.,

1997). Abraham et al. (1999) indicates that forward selection can be negatively influenced

by the way in which factors are assigned to columns, and suggest that all-subsets variable

selection should be used instead, a recommendation with which Kelly and Voelkel (2000)
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agree. Marley and Woods (2010) utilize forward selection with αenter = 0.05 in their

simulation, and find it to be relatively ineffective. Another common version of forward

selection, using AICc = AIC + 2k(k+1)
n−k−1 as a stopping criterion, is available in popular

software packages, like SAS and JMP.

In our simulation study we consider the Dantzig selector, given its effectiveness as demon-

strated by Marley and Woods (2010), as well as both versions of forward selection. Despite

its deficiencies, forward selection is simple, fast, and continues to be commonly used in prac-

tice, and if nothing else serves as a foil for the more effective Dantzig selector procedure.

Note that there are many other analysis techniques that have been proposed in the

literature, including Bayesian approaches (Chipman et al., 1997; Beattie et al., 2002; Marley

and Woods, 2010), genetic algorithms (Cela et al., 2001), approaches that use variants of

standard least squares (Li and Lin, 2002; Zhang et al., 2006) and approaches that are

elaborations of classical stepwise regression (Lu and Wu, 2004).

3.2 Simulation Procedure

The simulation procedure largely follows that of Marley and Woods (2010). In particular,

we vary the following in our simulation:

1. Supersaturated design size. Twelve choices were used, some of them based on SSDs

found in the literature. Specifically, we construct n × k SSDs of the following sizes:

8× 12; 10× 11; 10× 15; 12× 22; 12× 26; 14× 23; 14× 24; 16× 30; 18× 22; 20× 24;

24× 34; 26× 31;.

2. Design construction criteria. We investigate balanced E(s2)-optimal, Bayesian D-

optimal, model robust (g = dn/3e), model robust (g = d2n/3e), approximate power-

optimal (maximin), unbalanced E(s2)-optimal, and constrained V ar(s)-optimal su-

persaturated designs.

3. Simulation scenario. The number and magnitude of the active factors is varied across
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four different scenarios. In particular, the coefficient for each of the a randomly chosen

active factors is drawn at random from N(µ, 0.2) for the following:

• a = 3, µ = 5

• a = 4, µ = 4

• a = 6, µ = 3

• a = 9, µ = 3, 5, 8, 10 for each of four factors and µ = 2 for five factors.

4. Analysis method. We apply both the Dantzig selector, forward selection using αenter =

0.05 and forward selection using AICc for each supersaturated design.

The simulation is carried out as follows. Following Marley and Woods (2010), in each of

10,000 iterations

1. From the columns 2, . . . , k + 1 of X, a columns are randomly assigned as the active

factors. The coefficients for the active factors are obtained by sampling from N(µ, 0.2)

and a sign (+ or −) randomly applied.

2. The remaining effects (inactive effects) are randomly assigned a coefficient fromN(0, 0.2).

3. The response vector is generated from the model in equation (1) with errors (εi)

generated from N(0, 1).

4. The active factors are determined by one of the model selection methods.

At the end of 10,000 iterations the average proportion of correctly identified active effects

(i.e. power) and the average proportion of inactive effects identified as active (i.e., Type I

error) was reported. The proportion of times an individual column was correctly identified

(column power) was also calculated.

We note that the Dantzig selector requires specification of two parameters. The first,

δ, is a tuning parameter and is selected as in Marley and Woods (2010) via the usual BIC
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statistic given by

BIC = n log

(
(y−Xβ̂̂β̂β)′(y−Xβ̂)β̂)β̂)

n

)
+ p log(n), (7)

where p is the number of model terms and β̂ is the least squares estimate found by regressing

the response on the set of factors deemed active by the Dantzig selector. The second

parameter, γ, is a threshold for coefficient estimates. That is, those factors chosen by the

Dantzig selector whose absolute coefficients exceed γ are then selected as active. We, again,

follow Marley and Woods (2010) and choose γ = 1.5 to help control Type I error. Forward

selection was performed using a significance level of αenter = 0.05 for entry into the model

and forward selection using AICc as a stopping rule.

3.3 Simulation Results

Based on the analysis methods and simulation procedure described in the previous two

sections, we display the results of our simulations in Figures 1, 2 and 3. These figures show,

for both the Dantzig selector and forward selection, respectively, the power as a function

of design criterion, design size, and simulation scenario. In Figure 1 (Dantzig selector),

although we see some separation of the design construction criteria for the smaller SSDs

(e.g., 8×12, 10×11), it appears evident that no design construction criterion dominates all

others. We note though that the approximate power-optimal designs appear to distinguish

themselves negatively overall. In Figures 2 and 3 (forward selection), there is even less

notable differences between the construction criteria. See Tables A.1-A.6 in the appendix

for complete tabular results, including Type I error rates.

In order to help formalize the conclusions from the simulation, we develop a statistical

model for power by treating each of the simulation variables (i.e., number of experimental

runs (n), number of factors (k), design construction criterion (Criteria), simulation scenario

(Scenario), and analysis method (Method)) as experimental factors and proceed to fit a

model that includes all main effects and two-factor interactions involving these five factors.
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Figure 1: Power based on simulations with the Dantzig selector for each of seven design
types, twelve experiments and four simulation scenarios. Simulation scenario 1 corresponds
to {a = 3, µ = 5}; 2 corresponds to {a = 4, µ = 4}; 3 corresponds to {a = 6, µ = 3}; 4
corresponds to {a = 9, µ = mixed}.
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Figure 2: Power based on simulations with forward selection using AICc for each of seven
design types, twelve experiments and four simulation scenarios. Simulation scenario 1 corre-
sponds to {a = 3, µ = 5}; 2 corresponds to {a = 4, µ = 4}; 3 corresponds to {a = 6, µ = 3};
4 corresponds to {a = 9, µ = mixed}.
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Figure 3: Power based on simulations with forward selection using αenter = 0.05 for each of
seven design types, twelve experiments and four simulation scenarios. Simulation scenario
1 corresponds to {a = 3, µ = 5}; 2 corresponds to {a = 4, µ = 4}; 3 corresponds to
{a = 6, µ = 3}; 4 corresponds to {a = 9, µ = mixed}.
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Our goal in doing so is to more clearly emphasize the lack of differences among the various

SSD design construction criteria as seen in Figures 1-3.

First, we note that using the raw power values from the simulation as the response

variable resulted in an ill-fitting model as determined via usual residual diagnostics. Fur-

thermore, typical variance stabilizing transformations (e.g., arcsine square root) on this

response were unhelpful. As a consequence, we elected to model the number of truly active

factors declared active. Diagnostics obtained after modeling this count variable indicated a

good fit. Predicted values for power were then simply obtained by dividing the predicted

count of active factors declared active by the number of active factors in a given scenario.

The ANOVA table for this model is shown in Table 2 (R2 ≈ 96%). Immediately, we take

note that none of the interaction effects involving SSD construction criteria are significant.

See Figure 4 for a graphical depiction. Although the main effect for construction criterion

is statistically significant (p ≤ 0.0001), a Tukey multiple comparison procedure indicates

that only the approximate power-optimal SSDs (with lowest overall mean power) are sig-

nificantly worse than some of the others. Thus, in general, the analysis suggests that no

single design construction criteria distinguishes itself as superior to all others.

Figure 4a clearly displays the expected superiority of the Dantzig selector over forward

selection. Additionally, we note the benefit of forward selection using AICc as a stopping

criterion versus αenter = 0.05 with respect to power. Particularly, the Dantzig selector

possesses an approximately 17% improvement in power versus forward selection with AICc

and an approximate 41% improvement in power versus forward selection using αenter = 0.05.

Figure 4a also serves to highlight the similarities of the design construction criteria with

respect to power. A similar theme is depicted in Figures 4b,c,d in which simulation scenario,

run size, and number of factors clearly have a significant impact (as is to be expected) on

power. That is, higher values of power are seen as the SSD run size (n) increases (Figure 3c)

while lower power is evident as the complexity of the model increases (Figure 3b). However,

in each case, we continue to see that the effect of simulation scenario and SSD size on power

are the same across the levels of design construction criteria. Briefly, we note that a similar
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analysis for Type I error rates did not reveal differences among the SSD construction criteria.

It is worth mentioning that, overall, the Dantzig Selector was indicated as possessing the

lowest Type I error rate (mean of approximately 5%) while forward selection with AICc

had the highest (mean of approximately 15%).

As stated previously, power is calculated in this article by simulating data from super-

saturated experiments and measuring the proportion of correctly identified active effects.

As an aside, we note that in addition to computing power in this manner, one might be

interested in calculating power for an individual factor column. For instance, for a given

effect size, if it is known that a specific column has a smaller power than others, one might

be able to account for this in an analysis by, say, increasing the significance threshold for

this specific term’s entry into the model. In doing so, we are accepting an increased risk

of making a Type I error due to the lower column power. For our simulations, we also

investigated individual column power but again found no noticeable differences across the

various design criteria.

Table 2: ANOVA Table for Analysis of Power Simulation Results

Source DF Sum of Squares F Ratio P-value

Method 2 246280.87 1405.24 < .0001
Criteria 6 2683.26 5.10 < .0001
Scenario 3 440192.83 1674.45 < .0001
n (Number of Runs) 1 242975.06 2772.75 < .0001
k (Number of Factors) 1 8418.56 96.07 < .0001
Criteria*Method 12 1559.84 1.48 0.1242
Criteria*Scenario 18 738.90 0.47 0.9709
Criteria*n 6 92.27 0.18 0.9835
Criteria*k 6 259.90 0.49 0.8129
Method*Scenario 6 29798.99 56.68 < .0001
Method*n 2 5472.09 31.22 < .0001
Method*k 2 24771.59 141.34 < .0001
Scenario*n 3 80780.97 307.28 < .0001
Scenario*k 3 13015.67 49.51 < .0001
n*k 1 27065.41 308.86 < .0001
Error 935 81933.60 87.60
Total 1007 1889973.00
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(a) Criteria*Method (b) Criteria*Scenario

(c) Criteria*n (d) Criteria*k

Figure 4: Interactions Involving Construction Criteria. Simulation scenario 1 corresponds
to {a = 3, µ = 5}; 2 corresponds to {a = 4, µ = 4}; 3 corresponds to {a = 6, µ = 3}; 4
corresponds to {a = 9, µ = mixed}.

4 Discussion and Conclusions

In this article we have explored several well-established and new supersaturated design

construction methods and evaluated the resulting designs via simulation in terms of their

power to detect active factors. We have done this over 12 experiments that are of different
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sizes and levels of supersaturation. We have largely followed the simulation protocol of

Marley and Woods (2010) given their use of a wide range of scenarios involving the number

and sizes of active factors.

Based on the simulation and the subsequent analysis, our general conclusion is that

none of the tested supersaturated design construction criteria—whether established in the

literature or proposed in this paper—are significantly and consistently better in terms of

power than the others across the range of experiments and simulation scenarios considered.

This deepens and confirms the results of Marley and Woods (2010), whose conclusions were

based upon just three different experiments and two design construction methods. We

also found, as in Marley and Woods (2010), that the Dantzig selector dominates forward

selection as an analysis strategy. If forward selection is to be used, using AICc as a stopping

rule will produce increased power over αenter = 0.05. We note again, however, that among

the three analysis strategies forward selection with AICc as a stopping rule produced the

highest Type I error rates on average.

We believe power to be the ultimate basis upon which to measure the effectiveness of a

supersaturated design. Given our conclusion that most supersaturated design construction

methods are indistinguishable in terms of this most important criterion, we believe that

supersaturated designs can sensibly be chosen based upon convenience. For instance, the

Bayesian D-optimal SSDs can be easily constructed in JMP and SAS for any reasonable

number of runs and factors. On the other hand, software for constructing E(s2)-optimal

SSDs is not as accessible (though it does exist; see http://www.designcomputing.net/

gendex/). The choice appears to have little significance.

The designs used in this article are available as supplementary material at http://www.

asq.org/pub/jqt/.
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Appendix

Tables A.1-A.6 contain the tabulated results of our simulations as described in sections

3.2 and 3.3. Table A.7 contain the tabulated results of the column power simulation as

described in section 3.2.
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