Searching for Powerful Supersaturated Designs

MARIA L. WEESE

Miami University, Ozford, OH 45056

BYRAN J. SMUCKER

Miami University, Ozford, OH 45056
DAVID J. EDWARDS

Virginia Commonwealth University, Richmond, VA 23284

An important property of any experimental design is its power, defined roughly as the
ability to detect active factors. For supersaturated designs power is even more critical.
We consider several popular supersaturated design construction criteria in the literature,
propose several of our own, and perform a simulation study to evaluate them in terms of
power. We use two analysis methods—forward selection and the Dantzig selector—and
find that although the Dantzig selector clearly outperforms forward Selection, there is

no clear winner among the design construction criteria.

Keywords: Bayesian D-optimal; Dantzig selector; E(s?); Forward selection; Model Ro-

bust

Dr. Weese is an Assistant Professor in the Department of Information Systems & Analytics. She is a
senior member of ASQ. Her email address is weeseml@miamioh.edu.

Dr. Smucker is an Assistant Professor in the Department of Statistics. His email address is
smuckerb@miamioh.edu

Dr. Edwards is an Associate Professor in the Department of Statistical Sciences & Operations Research.
He is a member of ASQ. His email address is dedwards7@vcu.edu.



1 Introduction and Motivation

Screening experiments, using plans such as resolution III fractional factorials or Plackett-
Burman designs, are frequently utilized in the early stages of process experimentation. The
goal of screening is to distinguish the few important factors from the many unimportant
ones. However, when there are severe temporal or economic constraints a typical screening
design may require too many resources. Supersaturated designs (SSDs), which use n < k+1
runs to examine k factors, are attractive alternatives. Clearly, SSDs have too few runs to
allow for the estimation of all main effects and thus require the experimenter to rely heavily

on the assumption of effect sparsity.

The origin of SSDs is attributed to Satterthwaite (1959) who proposed random balance
experiments to identify a subset of important factors. Research in this area languished
until the early 1990s when Lin (1993) and Wu (1993) provided two of the early methods
for constructing F(s?)-optimal SSDs. In particular, Lin (1993) constructed SSDs as half-
fractions of Plackett-Burman (PB) designs and Wu (1993) proposed constructing E(s?)-
optimal SSDs by augmenting Hadamard matrices with two-factor interaction columns. See
also Li and Wu (1997) who built E(s?)-optimal SSDs based on a D-optimal design search
by applying columnwise-pairwise algorithms. This method contrasted with Wu (1993) in
that nonorthogonality does not mainly accumulate in the last factors. To date, E(s?) (to

be discussed in section 2) has become the most commonly used criterion for constructing

SSDs.

There are relatively few published case studies of the use of SSDs in practice. For a recent
example (though in a context in which the number of model terms—mnot the number of
factors—renders the experiment supersaturated), see Scinto et al. (2011). This experiment
studied the effect of more than 70 model terms on the coefficient of friction of engine
motor oil using just 28 runs. Another example, from Holcomb et al. (2007), concerns
experiments to aid in the evaluation of various turbine engine designs. There are 27 factors

of interest, each combination of which specifies an engine design, and the authors compare



the performance of several designs, including supersaturated designs of 12, 16, and 20 runs.

They conclude that supersaturated designs are unlikely to produce definitive results.

Though an abundance of criteria have been proposed to evaluate SSDs, the power—
defined as the average probability of detecting active effects for a specified set of effect
sizes—when balanced by a controlled Type I error rate is the ultimate measure of a design’s
effectiveness. It also has a straightforward interpretation for experimenters and their spon-
soring organizations. Gilmour (2006) notes that supersaturated “[d]esigns are usually built
to optimize the F(s?) criterion, but this appears to be unrelated to the way in which the
data are analyzed.” Using power to evaluate and recommend a variety of supersaturated
designs is the goal of the present study, and will help relate the design to its method of anal-
ysis and provide guidance to experimenters regarding which supersaturated designs to use.
We calculate power by simulating data from supersaturated experiments and measuring the

proportion of correctly identified active effects.

Marley and Woods (2010) measured power in this way and performed a simulation
study that compared the power and type I error (defined as the proportion of incorrectly
identified active effects) of two types of designs (Bayesian D-optimal and E(s?)-optimal)
and three analysis methods (forward selection, model averaging, and the Dantzig selector)
over three supersaturated experiments of differing sizes and several experimental scenarios.
They concluded that the analysis method had a large impact on power (the Dantzig selector
was best; forward selection using aenter = 0.05 was worst) while the design construction
criteria had no discernible effect. In this article, we focus and enlarge the study of Marley
and Woods along the design selection axis, comparing six different SSD construction criteria
over 12 different experiments. We use similar experimental scenarios as Marley and Woods,
and utilize two versions of forward selection (aenter = 0.05 and AICc as two different
stopping criteria) and the Dantzig selector as analysis methods. Our simulations, based
on design construction criteria that are a mix of established and new approaches, confirm
and deepen the conclusions of Marley and Woods. Even over this larger range of designs

and experiments, no single design construction criteria distinguishes itself as superior to all



others in regards to power.

The existing SSD construction criteria that we consider in this article are Bayesian D-
optimality (Jones et al., 2008), E(s?)-optimality (Booth and Cox, 1962; Lin, 1993; Wu,
1993), and model-robust (Jones et al., 2009; 7). We also motivate the consideration of
several new criteria, including unbalanced E(s?)-optimality, constrained V ar(s)-optimality,
and a criterion based upon an approximation of effect power. We test these design construc-
tion criteria over a suite of twelve SSDs, ranging from small and slightly supersaturated (e.g.,
11 factors in 10 runs) to medium-sized and more severely supersaturated (e.g., 30 factors

in 16 runs) to larger designs (e.g., 31 factors in 24 runs).

The statistical model we assume is standard. Let D represent the n X k supersaturated
design matrix with k factors with possible levels +1, and X = [1,D] is the main effects
model matrix where 1 is an n x 1 vector of ones. Throughout the paper we consider a linear

main effects model of the form

y=XB+e, (1)

where y is an n x 1 response vector, 8 is a vector of unknown parameters, and € is the
error vector with each element independent and E(e;) = 0 and Var(e;) = 0. For SSDs,
rank(X) < k + 1. Thus, X’X is singular and no unique least squares estimate for 3 can

be obtained. This necessitates analysis methods that can exploit the assumed sparsity of

effects (see section 3.1).

The rest of the paper is formatted as follows. Section 2 provides a description of the
various design construction criteria (established and new) that we utilize. Section 3 includes
a simulation study, using both forward selection and the Dantzig selector as SSD analysis
methods, as well as a statistical analysis of the simulation results. We conclude in Section

4 with a discussion and conclusions.



2 Supersaturated design construction criteria

In this section we review several supersaturated design criteria from the literature. We also

present several new criteria.

2.1 Established criteria

In the introduction to this article, we gave a brief review of some of the early revival in
supersaturated designs and mentioned design construction methods. Here we give several
leading supersaturated design criteria, and also review the methods by which they can be
constructed. The criteria we consider are not exhaustive in the literature (see, for instance,
Allen and Bernshteyn, 2003; Holcomb et al., 2003), but are popular and/or relatively easily

constructed or obtained.

2.1.1 E(s?)-optimality

Booth and Cox (1962) provided the first construction method utilizing the E(s?) criterion,
which minimizes the average of all squared pairwise inner products producing near orthog-
onal designs. Let s;; be the (4,5)th element of X'X. Then, the E(s?) criterion selects a

design that minimizes

E(s%) = l<:(k:2—1) Z.S?j (2)

while keeping the design balanced (i.e. each column has the same number of —1 as +1).
Marley and Woods (2010) extended the definition in equation (2) to include the intercept

column of X:

B(s?) = k(kil) 3 2. (3)

1<i<j

When the design is balanced the two criteria are essentially equivalent because balance



ensures that the intercept is uncorrelated with all main effects. The balanced F(s?) designs
used in this paper were generated either by the algorithm of Ryan and Bulutoglu (2007)
or by the nonorthogonal array (NOA) algorithm of Nguyen (1996). Both construction
methods employ a secondary criterion of minimizing the maa:st?j when there are several
designs that achieve the optimal lower bound on E(s?). Again, the E(s?) criterion is the
most commonly used criterion in the literature on SSDs. See, for example, Cheng (1997),
Liu et al. (2007), and Nguyen and Cheng (2008) for several other methods of constructing

E(s?)-optimal supersaturated designs.

2.1.2 Bayesian D-optimality

DuMouchel and Jones (1994) used a Bayesian approach to construct D-optimal designs
with a reduced dependence on a user-specified model. Model terms are categorized as
either primary or potential. Primary terms are assumed to be active, while potential terms

may or may not appear in the true model.

Subsequently, Jones et al. (2008) applied this idea to SSDs, with the assumption that
the intercept is primary and all main effects are potential terms. Under the assumption
that primary terms have a diffuse prior and that potential terms have a prior mean of 0
and variance of 72, the posterior variance-covariance matrix of 3 is proportional to (X'X +

K/72)~!, where K /72 is proportional to the prior variance-covariance matrix for 3, and

0 0
K — S (4)

Okx1  Tixk

Jones et al. (2008) suggested finding a supersaturated design that maximizes

op = [X'X + K/7? /0, (5)

The Bayesian D-optimal designs used in this work were created using JMP software with



72 = 1. Jones et al. (2008) notes that these designs are relatively insensitive to the choice
of 72 and use 72 = 5. This criterion can be used to produce designs with any number of

factors at any run size and does not require the SSD to be balanced.

2.1.3 Model Robust Supersaturated Designs

Jones et al. (2009) developed a method of SSD construction based on the model-robust
approach of Li and Nachtsheim (2000). Jones et al. (2009) begin by specifying a set of
models, F,, which is composed of all models that include g of the k factors. They then seek
model-robust supersaturated (MRSS) designs which maximize the proportion of estimable
models in F,. This proportion, called the estimation capacity (ECy), is the primary design
criterion; a secondary criterion (the average D-efficiency across all models in F,) is also
maximized, subject to ECy being maintained. The authors explore various combinations
of g, n, and k that result in MRSS designs that have 100% estimation capacity. The
columnwise-pairwise exchange algorithm employed in Jones et al. (2009) requires column
balance, unless the number of runs is odd in which case the design is made as balanced as

possible.

For a given k and g, there are r = (5) models in F,. This quantity can grow large
and becomes a computational bottleneck for Jones et al. (2009). Smucker and Drew (2014)
consider the same supersaturated model space but overcome the computational challenges
by choosing a subset of models from F, and finding a design robust for the subset. They
show that such designs give up little in terms of robustness with respect to the full model
space, and can be constructed in a small fraction of the time it takes when the full model

space is used.

Since in this article we consider experiments larger than those in Jones et al. (2009), we
utilize an algorithm based on Smucker and Drew (2014) to construct these designs. We test
designs using g = [n/3] and g = [2n/3], to model varying degrees of effect sparsity. The

algorithm is based upon coordinate exchange (Meyer and Nachtsheim, 1995) and thus does



not enforce balance.

2.2 New design construction criteria

We now present several original supersaturated design criteria.

2.2.1 Approximate Power

Under standard regression assumptions, power for each effect may be approximated using

the noncentral F-distribution (Mee, 2009) as

T=1-— FDiSt(FCT’ita vy, V2, )‘)

where Ferit = Fuuantite(1 — o, v1,12), v1 = 1 is the numerator degrees of freedom, v is the

denominator degrees of freedom and A = (Ag, A1, ..., Ax)" is the (k + 1)-vector of noncen-

trality parameters. Note that 7 is also a (k+ 1)-vector and corresponds to the approximate

power for each of the model parameters. The i** noncentrality parameter is calculated as
Cii

where c;; is the 7" diagonal element of (X'X +K/72)~!. We choose the signal to noise ratio,

Bi/o?, to be 1 and set 72 = 5. K is as defined in equation (4). Although other possibilities

exist, we construct approximate power optimal designs by maximizing the minimum power,

Tmazimin, Where the minimum is taken over all non-intercept parameters.

Older versions of JMP software (e.g. version 8) provide this approximate power calcu-
lation in the custom design platform with v = 1 for SSDs (in JMP 10 the experimenter is
given a choice regarding v5). Since there are not enough degrees of freedom to estimate all
main effects—let alone to estimate the error term—one approach to a power approximation
is JMP’s old default: Conjure a single degree of freedom for error (i.e. v = 1), with the

implicit reliance on effect sparsity to provide it. However, since effect sparsity is a necessary



assumption when using a SSD, and Marley and Woods (2010) suggest “[tJhe number of runs
should be at least three times the number of active factors,” we consider vo = |n —n/3],
which better reflects the assumption of effect sparsity by supposing that the number of

active effects will be at most [n/3].

2.2.2 Unbalanced FE(s?)-optimal

It has long been assumed in the literature, including by Booth and Cox (1962), that super-
saturated designs should be balanced. However, more recent authors have realized possible
advantages to relaxing this requirement. For instance, Jones et al. (2008) has demonstrated
that relaxing the balance constraint in constructing Bayesian D-optimal designs produces
designs with a lower value of E(s?) than the E(s?)-optimal design. Indeed, Marley and
Woods (2010) extend the definition of E(s?) as in (3) to include the intercept term, and

this is only different from the standard definition when the design is unbalanced.

We use the definition in (3) and find designs that minimize this quantity, without the
effect balance requirement. We construct these SSDs with an algorithm based upon coordi-
nate exchange (see section 2.3). Table 1 compares several balanced F(s?)-optimal designs
with their unbalanced counterparts, in terms of (3), for three supersaturated experiments.

It is clear that lower E(s?) values can be achieved if the balance requirement is removed.

Table 1: Comparison of balanced F(s?)-optimal design values with the unbalanced E(s?)-
optimal for three design sizes, in terms of the criterion defined in (3).

Design Size Type Criterion Value
n =12,k =26 Balanced F(s?)-optimal 7.52
Unbalanced E(s?)-optimal 7.18
n =14,k =24 Balanced F(s?)-optimal 7.31
Unbalanced E(s?)-optimal 6.88
n =18,k =22 Balanced F(s?)-optimal 5.80
Unbalanced E(s?)-optimal 5.52




2.2.3 Constrained Var(s)-optimal

The traditional balanced E(s?) criterion was extracted from Booth and Cox (1962). How-
ever, Booth and Cox (1962) did not actually propose E(s?). Instead, they proposed Var(s)
as a criterion, though they apparently assumed that E(s) = 0, which would imply that
Var(s) = E(s?). This assumption turns out not to be strictly true, whether in the design

considered by Booth and Cox (1962) or in SSDs more generally.

Because of this, we examine Var(s) as a criterion in this article. We calculate the

variance of s using

2

2 2
Var(s) = B(s*) — B(s)* = ) 1;; s?j “N\wrrD 1;% sij |- (6)

A design chosen to minimize Var(s) alone would allow very high s values with little or no
variation among them. To prevent this, we propose constrained Var(s) designs, in which
we minimize Var(s) subject to a specified E(s?) efficiency. We define E(s?) efficiency for
design D as

E(s®)(DY)

PO = T@m)

where D* is the E(s?)-optimal design (balanced or unbalanced). After evaluating several

choices, we have specified a lower bound on FE(s?)-efficiency of 80%.

2.3 Algorithms

For the designs constructed using the criteria described in Section 2.2, we utilized algo-
rithms based upon coordinate exchange (Meyer and Nachtsheim, 1995). A sketch of our
implementation is as follows, where ¢ represents one of the supersaturated criteria described

above:

1. Randomly construct an n x k initial supersaturated design.
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2. Iterate through the design coordinate by coordinate. At each coordinate, consider the

effect on ¢ of multiplying the current value by —1.

(a) If exchanging the current coordinate improves ¢, make the exchange.

(b) Otherwise, continue to the next coordinate.

3. Continue iterating through the design until convergence.

In step 2, we update the X’X matrix via the standard rank-1 update formula (see
Meyer and Nachtsheim, 1995). This is a heuristic optimization algorithm which does not
guarantee a globally optimal solution. Thus, each of multiple algorithm tries should begin
from a different initial design and the best chosen. For the designs generated by these

algorithms, we use 100 random starts.

3 Analysis and Simulations

3.1 Analysis Methods

While much has been published on the design of supersaturated experiments, much less has
been written about their analysis (Dejaegher and Vander Heyden, 2008). Two methods of

interest are forward selection and the Dantzig selector.

The Dantzig selector (Candes and Tao, 2007) chooses active factors by solving a very
simple convex program that can be transformed into a linear program. It locates a vector
of estimates, consistent with the data, that minimizes its £; norm. Phoa et al. (2009) utilize
this procedure for SSDs, and Marley and Woods (2010) find that it is more effective in

terms of power than forward selection or Bayesian variable selection.

When forward selection is used, Type I error rates can be quite high (Westfall et al.,
1997). Abraham et al. (1999) indicates that forward selection can be negatively influenced
by the way in which factors are assigned to columns, and suggest that all-subsets variable

selection should be used instead, a recommendation with which Kelly and Voelkel (2000)
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agree. Marley and Woods (2010) utilize forward selection with aepter = 0.05 in their

simulation, and find it to be relatively ineffective. Another common version of forward

2k(k+1)
n—k—1

selection, using AICc = AIC + as a stopping criterion, is available in popular

software packages, like SAS and JMP.

In our simulation study we consider the Dantzig selector, given its effectiveness as demon-
strated by Marley and Woods (2010), as well as both versions of forward selection. Despite
its deficiencies, forward selection is simple, fast, and continues to be commonly used in prac-

tice, and if nothing else serves as a foil for the more effective Dantzig selector procedure.

Note that there are many other analysis techniques that have been proposed in the
literature, including Bayesian approaches (Chipman et al., 1997; Beattie et al., 2002; Marley
and Woods, 2010), genetic algorithms (Cela et al., 2001), approaches that use variants of
standard least squares (Li and Lin, 2002; Zhang et al., 2006) and approaches that are

elaborations of classical stepwise regression (Lu and Wu, 2004).

3.2 Simulation Procedure

The simulation procedure largely follows that of Marley and Woods (2010). In particular,

we vary the following in our simulation:

1. Supersaturated design size. Twelve choices were used, some of them based on SSDs
found in the literature. Specifically, we construct n x k SSDs of the following sizes:
8 x 12; 10 x 11; 10 x 15; 12 x 22; 12 x 26; 14 x 23; 14 x 24; 16 x 30; 18 x 22; 20 x 24;
24 x 34; 26 x 31;.

2. Design construction criteria. We investigate balanced F(s?)-optimal, Bayesian D-
optimal, model robust (¢ = [n/3]), model robust (¢ = [2n/3]), approximate power-
optimal (maximin), unbalanced E(s?)-optimal, and constrained Var(s)-optimal su-

persaturated designs.

3. Simulation scenario. The number and magnitude of the active factors is varied across

12



four different scenarios. In particular, the coefficient for each of the a randomly chosen

active factors is drawn at random from N (u,0.2) for the following:

s a=3,p=
e a=4,p=
e a=6,u=3

e 0 =9, u=3,5,8,10 for each of four factors and pu = 2 for five factors.

4. Analysis method. We apply both the Dantzig selector, forward selection using aenter =

0.05 and forward selection using AICc for each supersaturated design.

The simulation is carried out as follows. Following Marley and Woods (2010), in each of

10,000 iterations

1. From the columns 2,...,k 4+ 1 of X, a columns are randomly assigned as the active
factors. The coefficients for the active factors are obtained by sampling from N (u, 0.2)

and a sign (+ or —) randomly applied.
2. The remaining effects (inactive effects) are randomly assigned a coefficient from N (0,0.2).

3. The response vector is generated from the model in equation (1) with errors (e;)

generated from N(0,1).

4. The active factors are determined by one of the model selection methods.

At the end of 10,000 iterations the average proportion of correctly identified active effects
(i.e. power) and the average proportion of inactive effects identified as active (i.e., Type I
error) was reported. The proportion of times an individual column was correctly identified

(column power) was also calculated.

We note that the Dantzig selector requires specification of two parameters. The first,

J, is a tuning parameter and is selected as in Marley and Woods (2010) via the usual BIC
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statistic given by

(y — XB)'(y — XB)

n

BIC = nlog ( ) + plog(n), (7)
where p is the number of model terms and £ is the least squares estimate found by regressing
the response on the set of factors deemed active by the Dantzig selector. The second
parameter, -y, is a threshold for coefficient estimates. That is, those factors chosen by the
Dantzig selector whose absolute coefficients exceed v are then selected as active. We, again,
follow Marley and Woods (2010) and choose v = 1.5 to help control Type I error. Forward
selection was performed using a significance level of aepter = 0.05 for entry into the model

and forward selection using AICc as a stopping rule.

3.3 Simulation Results

Based on the analysis methods and simulation procedure described in the previous two
sections, we display the results of our simulations in Figures 1, 2 and 3. These figures show,
for both the Dantzig selector and forward selection, respectively, the power as a function
of design criterion, design size, and simulation scenario. In Figure 1 (Dantzig selector),
although we see some separation of the design construction criteria for the smaller SSDs
(e.g., 8 x 12,10 x 11), it appears evident that no design construction criterion dominates all
others. We note though that the approximate power-optimal designs appear to distinguish
themselves negatively overall. In Figures 2 and 3 (forward selection), there is even less
notable differences between the construction criteria. See Tables A.1-A.6 in the appendix

for complete tabular results, including Type I error rates.

In order to help formalize the conclusions from the simulation, we develop a statistical
model for power by treating each of the simulation variables (i.e., number of experimental
runs (n), number of factors (k), design construction criterion (Criteria), simulation scenario
(Scenario), and analysis method (Method)) as experimental factors and proceed to fit a

model that includes all main effects and two-factor interactions involving these five factors.
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in=8, k=12

Power

Experiment

in=10, k=11}

{n=12, k=26}

in=10, k=15}

{n=26, k=31}

2 3
Simulation Scenano

Criteria
© Bayes Dopt
+ Es2 Balanced
< Es2 Unbalanced
< Robustg=2n/3
A Robust g=n/3
Var(s)-80%
7 Power-opt maximin

Figure 1: Power based on simulations with the Dantzig selector for each of seven design
types, twelve experiments and four simulation scenarios. Simulation scenario 1 corresponds
to {a = 3,u = 5}; 2 corresponds to {a = 4, = 4}; 3 corresponds to {a = 6,u = 3}; 4

corresponds to {a = 9, 4 = mixed}.
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Experiment © Bayes Dopt
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< Robustg=2n/3
A Robust g=n/3
Var(s)-80%
7 Power-opt maximin

{n=12, k=22} {n=12, k=26}

Power

in=14, k=24} in=16, k=30} in=18, k=22}

{n=24, k=34} {n=26, k=31}

1 2 3 4 1 2 3 4 1 2 3 4
Simulation Scenano

Figure 2: Power based on simulations with forward selection using AICc for each of seven
design types, twelve experiments and four simulation scenarios. Simulation scenario 1 corre-
sponds to {a = 3, u = 5}; 2 corresponds to {a = 4, u = 4}; 3 corresponds to {a = 6, u = 3};
4 corresponds to {a = 9, u = mixed}.
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Simulation Scenano

Figure 3: Power based on simulations with forward selection using center = 0.05 for each of
seven design types, twelve experiments and four simulation scenarios. Simulation scenario
1 corresponds to {a = 3,4 = 5}; 2 corresponds to {a = 4,4 = 4}; 3 corresponds to
{a =6, 1 = 3}; 4 corresponds to {a = 9, u = mixed}.
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Our goal in doing so is to more clearly emphasize the lack of differences among the various

SSD design construction criteria as seen in Figures 1-3.

First, we note that using the raw power values from the simulation as the response
variable resulted in an ill-fitting model as determined via usual residual diagnostics. Fur-
thermore, typical variance stabilizing transformations (e.g., arcsine square root) on this
response were unhelpful. As a consequence, we elected to model the number of truly active
factors declared active. Diagnostics obtained after modeling this count variable indicated a
good fit. Predicted values for power were then simply obtained by dividing the predicted
count of active factors declared active by the number of active factors in a given scenario.
The ANOVA table for this model is shown in Table 2 (R? ~ 96%). Immediately, we take
note that none of the interaction effects involving SSD construction criteria are significant.
See Figure 4 for a graphical depiction. Although the main effect for construction criterion
is statistically significant (p < 0.0001), a Tukey multiple comparison procedure indicates
that only the approximate power-optimal SSDs (with lowest overall mean power) are sig-
nificantly worse than some of the others. Thus, in general, the analysis suggests that no

single design construction criteria distinguishes itself as superior to all others.

Figure 4a clearly displays the expected superiority of the Dantzig selector over forward
selection. Additionally, we note the benefit of forward selection using AICc as a stopping
criterion versus Qenter = 0.05 with respect to power. Particularly, the Dantzig selector
possesses an approximately 17% improvement in power versus forward selection with AICc
and an approximate 41% improvement in power versus forward selection using cepter = 0.05.
Figure 4a also serves to highlight the similarities of the design construction criteria with
respect to power. A similar theme is depicted in Figures 4b,c,d in which simulation scenario,
run size, and number of factors clearly have a significant impact (as is to be expected) on
power. That is, higher values of power are seen as the SSD run size (n) increases (Figure 3c)
while lower power is evident as the complexity of the model increases (Figure 3b). However,
in each case, we continue to see that the effect of simulation scenario and SSD size on power

are the same across the levels of design construction criteria. Briefly, we note that a similar
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analysis for Type I error rates did not reveal differences among the SSD construction criteria.
It is worth mentioning that, overall, the Dantzig Selector was indicated as possessing the
lowest Type I error rate (mean of approximately 5%) while forward selection with AICc

had the highest (mean of approximately 15%).

As stated previously, power is calculated in this article by simulating data from super-
saturated experiments and measuring the proportion of correctly identified active effects.
As an aside, we note that in addition to computing power in this manner, one might be
interested in calculating power for an individual factor column. For instance, for a given
effect size, if it is known that a specific column has a smaller power than others, one might
be able to account for this in an analysis by, say, increasing the significance threshold for
this specific term’s entry into the model. In doing so, we are accepting an increased risk
of making a Type I error due to the lower column power. For our simulations, we also
investigated individual column power but again found no noticeable differences across the

various design criteria.

Table 2: ANOVA Table for Analysis of Power Simulation Results

Source DF  Sum of Squares F Ratio P-value
Method 2 246280.87 1405.24 < .0001
Criteria 6 2683.26 5.10 < .0001
Scenario 3 440192.83 1674.45 < .0001
n (Number of Runs) 1 242975.06 2772.75 < .0001
E (Number of Factors) 1  8418.56 96.07 < .0001
Criteria*Method 12 1559.84 1.48 0.1242
Criteria*Scenario 18 738.90 0.47 0.9709
Criteria*n 6 92.27 0.18 0.9835
Criteria*k 6 259.90 0.49 0.8129
Method*Scenario 6 29798.99 56.68 < .0001
Method*n 2 5472.09 31.22 < .0001
Method*k 2 24771.59 141.34 < .0001
Scenario*n 3 80780.97 307.28 < .0001
Scenario*k 3 13015.67 49.51 < .0001
n*k 1 27065.41 308.86 < .0001
Error 935 81933.60 87.60

Total 1007 1889973.00
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Figure 4: Interactions Involving Construction Criteria. Simulation scenario 1 corresponds
to {a = 3,u = 5}; 2 corresponds to {a = 4, = 4}; 3 corresponds to {a = 6,u = 3}; 4
corresponds to {a =9, u = mixed}.

4 Discussion and Conclusions

In this article we have explored several well-established and new supersaturated design

construction methods and evaluated the resulting designs via simulation in terms of their

power to detect active factors. We have done this over 12 experiments that are of different
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sizes and levels of supersaturation. We have largely followed the simulation protocol of
Marley and Woods (2010) given their use of a wide range of scenarios involving the number

and sizes of active factors.

Based on the simulation and the subsequent analysis, our general conclusion is that
none of the tested supersaturated design construction criteria—whether established in the
literature or proposed in this paper—are significantly and consistently better in terms of
power than the others across the range of experiments and simulation scenarios considered.
This deepens and confirms the results of Marley and Woods (2010), whose conclusions were
based upon just three different experiments and two design construction methods. We
also found, as in Marley and Woods (2010), that the Dantzig selector dominates forward
selection as an analysis strategy. If forward selection is to be used, using AICc as a stopping
rule will produce increased power over center = 0.05. We note again, however, that among
the three analysis strategies forward selection with AICc as a stopping rule produced the

highest Type I error rates on average.

We believe power to be the ultimate basis upon which to measure the effectiveness of a
supersaturated design. Given our conclusion that most supersaturated design construction
methods are indistinguishable in terms of this most important criterion, we believe that
supersaturated designs can sensibly be chosen based upon convenience. For instance, the
Bayesian D-optimal SSDs can be easily constructed in JMP and SAS for any reasonable
number of runs and factors. On the other hand, software for constructing E(s?)-optimal
SSDs is not as accessible (though it does exist; see http://www.designcomputing.net/

gendex/). The choice appears to have little significance.

The designs used in this article are available as supplementary material at http://www.

asq.org/pub/jqt/.
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Appendix

Tables A.1-A.6 contain the tabulated results of our simulations as described in sections
3.2 and 3.3. Table A.7 contain the tabulated results of the column power simulation as

described in section 3.2.
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