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Abstract

As a criterion for selecting supersaturated designs, we suggest minimizing the vari-

ance of the pairwise inner products of the information matrix, subject to a constraint

on the E(s2)-efficiency as well as a requirement that the average correlation between

the columns is positive. We call these designs constrained positive V ar(s)-optimal and

argue that if the direction of the effects can be specified in advance, these designs are

more powerful to detect active effects than other supersaturated designs while not sub-

stantially increasing Type I error rates. These designs are constructed algorithmically,

using a coordinate-exchange algorithm that exploits the structure of the criterion to

provide computational advantages. We also demonstrate that, for the simulation sce-

narios considered, misspecification of the effect directions will, at worst, result in power

and Type I error rates in line with standard supersaturated designs.

Keywords biased designs, constrained V ar(s), coordinate exchange, Dantzig selector,

forward selection, optimal design;

1 Introduction

Supersaturated experiments—classically defined as those in which the number of runs is no

more than the number of factors—have been constructed using a wide variety of criteria, the

most venerable being E(s2). These designs (Booth and Cox, 1962; Lin, 1993; Wu, 1993) are
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pleasingly intuitive: they produce designs with small pairwise column correlations. They

also minimize, for each non-intercept least squares parameter estimate, the bias due to the

presence of other non-zero effects (Lin, 1995). Although the E(s2) criterion has received a

majority of the attention in the supersaturated design literature, alternatives do exist that

depart from a focus on pairwise dependencies (see, e.g., Deng et al. (1996) and Deng et al.

(1999)).

Recent attention, both within academia (Marley and Woods, 2010; Draguljić et al., 2014;

Weese et al., 2015) and from industry (Brenneman, 2014; Scinto et al., 2014), has focused

researchers on answering the following: How does one know that the chosen supersaturated

design will find the correct active factors? Motivated by this question, we have developed

a class of supersaturated designs that exploit the bias due to other non-zero effects and

demonstrate that under the condition that the effect directions are known in advance, our

designs have an increased power to detect active effects (i.e. the factors that produce the

largest change in the response) versus standard supersaturated design construction criteria.

Other studies (Marley and Woods, 2010; Weese et al., 2015) have suggested that when

evaluated based on the power to detect active effects, neither E(s2) nor any of the other

leading criteria, including Bayesian D-optimality (Jones et al., 2008) and model-robustness

approaches (Jones et al., 2009), distinguish themselves positively from the others. Based

on what we know up to this point about the performance of the classical criteria, we are

indifferent to the choice of supersaturated design criteria, except to the extent that some are

more easily generated than others. This appears to be the case for experiments of varying

size and for both traditional (forward selection) and modern (Dantzig selector) variable

selection methods.

The E(s2) criterion was taken from Booth and Cox (1962), though these authors actually

wrote about V ar(s) as a criterion, apparently assuming that E(s) = 0. Weese et al.

(2015) explored constrained V ar(s)-optimal designs, which minimize the variance of the

off-diagonals of the information matrix subject to a specified level of E(s2)-efficiency. They

found that over a range of experimental scenarios they performed no better than other
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supersaturated designs in terms of power. In this article, we revisit and refine this approach

by imposing the additional constraint that the constrained V ar(s)-optimal designs must

have a positive average column correlation. We refer to these designs as constrained positive

V ar(s)-optimal, and argue that if the sign of the main effects can be specified in advance, the

least squares estimates will have a positive bias. Via simulation, we then demonstrate that

for a wide variety of experiments and effect sizes, across two versions of forward selection as

well as the Dantzig selector, these designs are significantly more powerful than those designs

constructed using standard criteria (i.e. Bayes D-optimal and E(s2)-optimal). Furthermore,

Type I error rates for the proposed designs are not any worse than those for other designs.

The requirement that the sign of the main effects must be specified is crucial to the

increased power of the constrained positive V ar(s) designs. This is an assumption that

has often been made in the group screening (e.g. Watson, 1961; Draguljić et al., 2014) and

sequential bifurcation (e.g. Bettonvil and Kleijnen, 1996) literature. Indeed, in the planning

stages of many studies, it is often the case that the experimenter has prior information about

effect directions. Draguljić et al. (2014) notes that “[in] many experiments, for example, in

engineering and chemistry, experts are often able to provide information on the ‘direction’

of each main effect based on scientific knowledge or previous experience.” For instance,

consider an example from the chemical manufacturing industry, in which several oxidation

inhibitors are being investigated for their relationship with a measure of the viscosity in-

crease of the lubricant they are added to. Since oxidation causes oil thickening and given

that the inhibitors have been formulated expressly to reduce oxidation, it is plausible that

the experimenter could identify that the presence of an oxidation inhibitor would suppress

viscosity increase, even before the experiment is conducted. We show empirically, however,

that even if signs are grossly misspecified, the constrained positive V ar(s)-optimal designs

do not fare any worse than other designs, even though the designs have more column cor-

relation, on average. This work extends the work of Weese et al. (2015) by (1) introducing

the constrained positive V ar(s) criterion and (2) establishing the superiority of the new

constrained positive V ar(s) criterion in terms of power when the effect directions can be
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specified in advance, at least for the range of simulations undertaken.

In the following section we define the setting, the criterion of interest, and the algorithm

used to generate the designs. In Section 3 we provide arguments to justify our approach,

including a simple theoretical explanation as well as one based upon properties of the

new designs. Section 4 provides direct evidence that, for the wide variety of experimental

scenarios simulated, the proposed designs enjoy increased power, have Type I error rates

that are no worse then other designs, and are robust to the misspecification of the effect

directions. Finally, in Section 5 we provide some discussion and conclusions.

2 The Constrained V ar(s) Criterion

2.1 Assumed Model

The implicit model of interest when executing a supersaturated experiment for k factors is

the main effects model

Y = Xβ + ε, (1)

where Y and ε are n×1 vectors, β is a (k+ 1)×1 vector, X is n× (k+ 1), and the elements

of the error vector are independent with E(εi) = 0 and V ar(εi) = σ2. Since n < k + 1,

M = X
′
X is singular and consequently the analysis must assume that the number of active

effects is no greater than n. In this work we consider only two level designs with values 1

and -1.

2.2 Constrained Positive V ar(s) Criterion

Standard supersaturated design construction methods produce designs with off-diagonal

elements of X
′
X that are small in absolute value, which in turn produces relatively small

correlations between columns. For such designs, there is an equal likelihood that the column

correlations will be negative or positive. An example of such a standard criterion is E(s2),
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i.e.,

E(s2) =
2

k(k − 1)

∑
2≤i<j

s2ij , (2)

where sij is the (i, j)th element of X ′X. This criterion, when minimized, clearly produces

s2ij that are as small as possible on average.

For the designs in this paper, we take a different approach building upon the constrained

V ar(s)-optimal designs of Weese et al. (2015). Instead of minimizing the sum of the squares

of the off-diagonal elements of X ′X, we minimize the variance of the off-diagonal elements

while forcing the average of those elements to be positive. This approach allows the average

of the off-diagonal elements to be larger than that of the E(s2)-optimal design, but we

prevent the average from becoming too large by imposing a constraint on the design’s

E(s2)-efficiency. Specifically, we choose a design D which minimizes

V ar(s) = E(s2)− E(s)2

=
2

k(k + 1)

∑
1≤i<j

s2ij −

 2

k(k + 1)

∑
1≤i<j

sij

2

(3)

subject to

EE(s2) =
E(s2)(D∗)

E(s2)(D)
> c (4)

E(s) > 0

where D∗ is the E(s2)-optimal design and c is a user-specified efficiency that determines

how close to E(s2)-optimal the design must be. Note again that we choose a design to

minimize this criterion while forcing E(s) > 0 and constraining the E(s2)-efficiencies. This

criterion bears some similarities to that proposed by Booth and Cox (1962), though they

assumed (a) that the designs should be balanced; (b) E(s) = 0, which leads to the classical

E(s2) criterion; and (c) the intercept column should not be included in the calculation.

Although we desire little variation among the off-diagonal elements of X ′X, a design

selected via minimization of V ar(s) alone would allow for extremely large column correla-
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tions. For example, one could construct an unconstrained V ar(s)-optimal design such that

all column correlations equal 1. Hence, our proposed constraint on E(s2)-efficiency. We use

c = 0.8 in our simulations; a justification for this is given in Section 4.3.

To ensure an E(s2)-efficiency greater than c, we must first find the E(s2)-optimal design,

D∗. We construct these designs algorithmically, using a similar procedure to that described

in Section 2.3. Unlike the classical form of E(s2) given in (2), we include the intercept as

a column to be considered and do not restrict these designs to be balanced in the sense

that we allow effect columns to have different numbers of −1’s and 1’s. Note that a recent

paper (Jones and Majumdar, 2014) studies these unbalanced E(s2)-optimal designs and

concludes that they generally produce more precise estimates of main effects than their

balanced predecessors. We also note, however, that Weese et al. (2015) did not find these

unbalanced E(s2)-optimal designs to be superior in terms of power to detect active effects.

Further justification for the proposed criterion, particularly in light of the requirement

that effect directions be specified in advance, will be provided in Section 3.

2.3 Algorithm

To construct the constrained positive V ar(s) designs, we use an algorithm following coor-

dinate exchange (Meyer and Nachtsheim, 1995), that goes roughly as follows:

1. Randomly construct a n× k initial designs until one is found for which E(s) > 0.

2. Construct an initial design that satisfies (4). Iterate from one coordinate to the next,

row by row, and if the last row is reached begin at the first row again. At each

coordinate consider the impact on the design when the current coordinate value is

exchanged (i.e. multiplied by −1, since we are considering only two levels). Make an

exchange when EE(s2) is increased while E(s) > 0 is maintained. When EE(s2) ≥ c,

go to Step 3.

3. Iterate from one coordinate to the next, row by row, and if the last row is reached begin
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at the first row again. At each coordinate, consider the change in the V ar(s) criterion,

the E(s2)-efficiency, and E(s) when the current coordinate value is multiplied by −1.

(a) If exchanging the coordinate improves V ar(s) while maintaining EE(s2) ≥ c and

E(s) > 0, make the exchange.

(b) Otherwise, continue to the next coordinate.

Continue with this step, iterating through the design until convergence to a local

optimum.

Global optimality is not guaranteed for a single execution of this algorithm, so several

algorithm tries should be run from different initial designs and the best chosen. In this work

we use 100 random starts, in an attempt to maintain a balance between near-optimality

and time-efficiency.

For steps 2 and 3, instead of using a standard rank-1 updating formula for M as is typical

in coordinate exchange algorithms (Meyer and Nachtsheim, 1995), we can update E(s2)

and V ar(s) via arithmetic operations as follows. Recall that in this article we consider

only two-level designs with levels −1 and 1. Let X and M be the design matrix and

information matrix for an arbitrary two-level design, and sij = [M ]ij . Suppose xij = [X]ij

is updated such that xupij = (−1)xij . Denote Mup as the information matrix for Xup. Let

T =
∑

i′<j′ si′j′ for M so that T =

(
k + 1

2

)
E(s), and T up be the analogous sum for Mup.

When xij is replaced by xupij , only elements in row j and column j of M will change.

Note that an arbitrary element of the information matrix is [M ]uv =
∑n

i′=1 xi′uxi′v so that

each element of M is composed of n terms and for column [M ].j , a single one of those terms

includes xij . That particular term, in each element of column j of M (the exception is

Mjj =
∑

i′ x
2
i′j , which will be unchanged because x2ij = (−xij)2) determines the change in

T as follows:

T up = T + 2xupij
∑
k 6=j

xik. (5)
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That is, if xupij has the same sign as xik, T increases by 2; if the sign is not the same, T

decreases by the same amount. Then,

[E(s)]up =
T up(
k + 1

2

) . (6)

To update E(s2) if xij is exchanged for xupij = (−1)xij , let Q =
∑

i′<j′ s
2
i′j′ and Qup be the

analogous sum for Mup. Then,

Qup = Q+

∑
i′ 6=j

(si′j + ci′)
2 −

∑
i′ 6=j

s2i′j

 , (7)

where ci′ = 2xupij xii′ is the change in T due to the i′th element of [X]i.. Then [E(s2)]up =

Qup(
k + 1

2

) and

[V ar(s)]up = [E(s2)]up − {[E(s)]up}2. (8)

3 Justification of the Constrained Positive V ar(s) Criterion

Lin (1995) shows that the expected values of the least squares estimates obtained via com-

ponentwise regression are related to the column correlations in a simple way. That is,

E(β̂i) = βi +
∑
i 6=j

rijβj , (9)

where β̂i is the least-squares estimate of βi, rij is the correlation between columns i and j.

Now, the constrained positive V ar(s)-optimal designs have, on average, E(rij) > 0 by

construction. (Note that by forcing the average to be positive we are implicitly encouraging

the individual elements to be positive, although this is not explicitly required.) Furthermore,

we assume that the sign of each effect can be specified, so that each column in X can

be appropriately transformed such that the value of each parameter is positive. Thus,
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(9) clearly shows that parameter estimates under these conditions will be inflated in the

correct direction rather than being accidentally shrunk. Lin (1995) remarks that in order

for an active factor to be identified, it “must have an effect too large to be masked by the

experimental error and the combined effects of unimportant factors.” Here, we use other

active factors to make the estimate larger, in order to exaggerate its effect and increase the

chance of identifying it as active.

Table 1 and Figure 1 display summaries of design characteristics (i.e., V ar(s), E(s),

E(s2), mean absolute correlation, maximum absolute correlation) across different design

construction criteria for all supersaturated designs studied (Table 2). By design, con-

strained positive V ar(s)-optimal SSDs have smaller V ar(s) and larger E(s) than their

Bayesian D-optimal and E(s2)-optimal counterparts (Figure 1a and 1b). Interestingly,

while the V ar(s)-optimal designs have slightly larger E(s2) values, differences are less ap-

parent among the designs constructed from the three criteria with regards to mean |rij | or

the max |rij | (Figures 1c, 1d, and 1e). Note also that in this and subsequent comparisons

of supersaturated designs, we used traditional balanced E(s2)-optimal designs. This ex-

plains why Table 1 shows that the Bayesian D-optimal designs have smaller E(s2) values,

on average, than the E(s2)-optimal designs.

Table 1: Average values of various design characteristic measures, averaged over the 20
designs in Table 2.

Design Criterion
Measure Bayesian D-optimal E(s2)-optimal V ar(s)-optimal

V ar(s) 5.350 5.590 4.670
E(s) −0.040 −0.110 1.020
E(s2) 5.400 5.670 6.040
E(|r|) 0.149 0.156 0.151

Max(|r|) 0.512 0.499 0.525

To further strengthen our justification for the constrained positive V ar(s) criterion, we

investigate the Frobenius norm of the alias matrix (i.e., ‖A‖F =
√
trace(ATA)) across

projections of supersaturated designs of the various sizes given in Table 2. For each design

size, projections of up to half the run size are considered. This choice is reasonable given the
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(a) V ar(s) (b) E(s) (c) E(s2)

(d) Mean |r| (e) Max |r|

Figure 1: Comparison of design characteristics for Bayesian D-optimal, E(s2)-optimal, and
constrained positive V ar(s)-optimal designs

guideline of Marley and Woods (2010) that the number of runs should be at least three times

the number of active factors. Letting X1 denote a particular design projection (plus the

intercept column) and X2 consist of all remaining columns of the design matrix, we compute

A = (X ′1X1)
−1X ′1X2 and ‖A‖F for each projection. Figure 2 shows the Frobenius norm (up

to 5 factor projections) for Bayesian D-optimal, E(s2)-optimal, and constrained positive

V ar(s)-optimal designs across all design sizes. From this, it is clear that the constrained

positive V ar(s) designs produce alias matrices with larger Frobenius norms and thus, as

desired, more positively biased effect estimates on average.

Of course, two objections may be raised: (1) while the estimates of active effects are

inflated so are the estimates of inactive effects, and this should increase Type I error rates;

and (2) since column correlations are larger, effect estimate standard errors are slightly

larger on average. In the following section we demonstrate, for the simulation conditions

considered, that the bump in the estimates for constrained positive V ar(s) designs over-
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shadows this increase of standard errors and does indeed result in greater power to detect

active effects. Furthermore, Type I error rates are not significantly higher.

Figure 2: Frobenius norm of alias matrix across design projections

4 Simulations

In this section we use simulation to study constrained positive V ar(s)-optimal designs and

compare them to standard supersaturated designs. We consider a wide variety of supersat-

urated experimental situations, assuming the experimenter can specify with certainty all

effect directions. Then, we study the effects of misspecifying the sign of the effects. First,

however, we describe several analysis methods that we use to judge the power of various

designs in our simulations, and detail the general simulation protocol that was used.

4.1 Analysis Methods

We consider three analysis methods: the Dantzig selector and two versions of forward

selection. The Dantzig selector (Candes and Tao, 2007) chooses as active factors those terms
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that are consistent with the data and minimize the `1 norm of the vector of estimates. These

estimates can be obtained via linear programming. Phoa et al. (2009) use this procedure to

analyze supersaturated designs, and evidence is growing (Marley and Woods, 2010; Draguljić

et al., 2014; Weese et al., 2015) that this method dominates traditional forward selection

methods, in terms of power to detect active effects. Note that the Dantzig selector requires

specification of two tuning parameters, δ and γ. As in Marley and Woods (2010), we use

the usual BIC statistic to select δ and choose γ = 1.5 to help control Type I error.

We also consider two versions of forward selection because they are fast, easy-to-understand,

and commonly used in practice. We acknowledge that the literature (Westfall et al., 1997;

Abraham et al., 1999; Marley and Woods, 2010, for example)—and our experience Weese

et al. (2015)—points to a myriad of deficiencies with this general approach. However, we

note that this article’s objective is not to adjudicate analysis methods but to demonstrate

that the constrained positive V ar(s) designs are better for a variety of analysis methods,

when the effect directions can be accurately specified. Thus, we use forward selection with

two different stopping criteria: αenter = 0.05 and the corrected version of Akaike’s Informa-

tion Criterion, AICc = AIC + 2k(k+1)
n−k−1 (Hurvich and Tsai, 1989).

4.2 Simulation Protocol

We wish to test constrained positive V ar(s)-optimal designs against Bayesian D-optimal

and E(s2)-optimal designs, in a wide variety of experimental scenarios. Consequently, we

vary the following in our simulations:

1. Design size,(n, k). We considered twenty different sizes, from small to moderately

large and with a variety of levels of supersaturation. See Table 2.

2. Experimental scenario. Following Marley and Woods (2010), we vary the number

and magnitude of active factors over four scenarios. Specifically, each scenario has a

active factors and for each their regression coefficient is drawn from N(µ, 0.2) for the

following:
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• a = 3, µ = 5;

• a = 4, µ = 4;

• a = 6, µ = 3;

• a = 9, µ = 3, 5, 8, 10 for four factors and µ = 2 for five factors.

If k < a, the scenario is skipped for that design.

3. Design construction criteria. Here we include the classical balanced E(s2)-optimal

(or nearly balanced for odd n), Bayesian D-optimal, and the new constrained positive

V ar(s)-optimal designs.

4. Analysis method. As mentioned in Section 4.1, we will use the Dantzig selector as

well as two versions of forward selection.

The constrained positive V ar(s)-optimal designs were generated as described in section

2.3. The Bayesian D-optimal designs were generated using 100 random starts in JMP Pro

11.2 and a prior variance of τ2 = 1. The E(s2)-optimal designs were constructed using the

nonorthogonal array (NOA) algorithm of Nguyen (1996) in Gendex (www.designcomputing.

net/gendex/). Note that in Weese et al. (2015) the unbalanced E(s2)-optimal designs were

not significantly better than the classical balanced E(s2)-optimal designs; hence their ab-

sence in our simulation study.

The simulation also largely follows Weese et al. (2015). In each of 10,000 iterations,

1. From the columns 2, ..., k + 1 of X, a columns are randomly assigned as the active

factors. The coefficients are obtained by sampling from N(µ, 0.2).

2. The remaining (k − a) columns (inactive effects) are assigned a coefficient from

abs(N(0, 0.2)). (Note that we also performed simulations under other inactive ef-

fect conditions, including setting the inactive effects to be exactly zero, with similar

and favorable results for the constrained positive V ar(s)-optimal designs. Ultimately,

we elected to assign inactive effects a small value from a normal distribution in order
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Table 2: Supersaturated design sizes considered in our simulations, and a measure of su-
persaturation.

n k k/n

5 10 2.00
6 10 1.67
6 11 1.83
7 8 1.14
8 12 1.50
9 12 1.33
9 18 2.00
10 11 1.10
10 15 1.50
12 26 2.17
14 23 1.64
14 24 1.77
16 30 1.88
17 18 1.05
18 22 1.22
19 23 1.21
20 34 1.70
24 34 1.42
26 31 1.19
31 33 1.06

to create a more realistic screening setting. The alternative simulation results are

available in the supplementary materials at www.asq.org/jqt.)

3. The signs of the all of the coefficients were determined by sampling from Bernoulli(p)

where p is chosen to be either 0, 0.25, or 0.5. For simulations testing the effectiveness

of designs when the signs of all coefficients are correctly specified, p = 0. The other

values of p are used for the simulations testing the robustness of the constrained

positive V ar(s)-optimal designs to effect direction misspecification. For instance,

p = 0.25 indicates that each coefficient had a 25% chance of being changed from

positive to negative.

4. The response vector is generated from the model in (1) with errors (εi) generated from

N(0, 1).

5. The declared “active” factors are determined by one of the analysis methods.
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At the end of 10,000 iterations the proportion of correctly identified active effects (power),

the proportion of the inactive effects identified as active (Type I error) and the proportion

of times all of the truly active effects were chosen (coverage) were reported.

4.3 The choice of c for Constructing Constrained Positive V ar(s)-optimal

designs

To illustrate the differences between the choices of c, consider Table 3. It is clear that

V ar(s) is smaller, on average, as c decreases. However, this comes at the expense of larger

values for E(s2). We performed simulations to compare the power and Type I error rates

of constrained positive V ar(s)-optimal designs for c = (0, 0.2, 0.4, 0.6, 0.8, 1). Our analysis

showed no statistical difference in Type I error rates for the differing values of c, but found

that c = 1 or c = 0 was significantly inferior to designs constructed with c between 0.2 and

0.8 in terms of power. The choice of c = 0.8 provides a balance between Type I error and

power.

Table 3: Objective function values and mean and maximum absolute correlations across all
design sizes for various values of c

Criterion Value

c V ar(s) E(s) E(s2) Mean |r| Max |r|
0.000 3.394 4.141 27.776 0.378 0.701
0.200 3.810 3.242 17.185 0.288 0.698
0.400 4.246 2.503 11.231 0.225 0.574
0.600 4.621 1.745 8.241 0.175 0.527
0.800 4.948 1.003 6.272 0.149 0.509
1.000 5.226 0.370 5.391 0.138 0.517

4.4 Simulation Results when Effect Directions are Known (p = 0)

We first analyze the optimal case of no sign misspecification (p = 0); that is, all of the

coefficient signs are known. Note that this is equivalent to all coefficient signs being positive.

Figure 3a displays the results of these simulations for all designs sizes, across all scenarios

and analysis methods. This figure clearly shows the dominance of the constrained positive

15



V ar(s)-optimal designs with regards to power, and the results are clearest when the analysis

method is either the Dantzig selector or Forward selection using αenter = 0.05. Constrained

positive V ar(s)-optimal designs perform particularly well for the last two, more difficult,

scenarios ([µ = 3, a = 6] and [µ = mixed, a = 9]) using the Dantzig selector.

Figure 3b displays a similar plot for the average Type I error rate across all design sizes.

There appears to be little difference between the Type I error rates of the design criteria

with the exception that the combination of the constrained positive Var(s)-optimal designs

have lower Type I error using the Dantzig selector than the other two design types. Based

on the simulation results, Forward selection using AICc has the overall highest Type I error

rate compared to the other analysis methods.

The difference between the constrained positive V ar(s)-optimal designs and the standard

designs persists when coverage is considered. Figure 4 shows the average coverage across

all twenty design sizes for each analysis method and scenario. The constrained positive

V ar(s) criteria leads to higher average coverage and this is especially evident in the first

three scenarios using the Dantzig selector.

To strengthen the conclusions from the simulation, we consider a formal statistical anal-

ysis using a measure of the power and Type I error as responses and treating the simulation

variables (number of experimental runs, n; number of factors, k; design construction crite-

ria, Criteria; simulation scenario, Scenario; and analysis method, Method) as experimental

factors. We note that using the raw power and Type I error proportions from the simulations

resulted in ill-fitting models as determined via usual residual diagnostics. Consequently, we

fit a typical regression model using the square root of the count values of either the truly ac-

tive factors declared active (power count) or the truly inactive factors declared active (Type

I error count) as the response. Model diagnostics for both models indicate a reasonably

good fit.

Figure 5 displays the Criteria main effect (p-value < 0.0001) from the model for power

counts (R2 ≈ 95%). A Tukey multiple comparison procedure indicates that the constrained
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(a) Power

(b) Type I Error

Figure 3: Average power and Type I error based on simulations when p = 0 over all twenty
designs sizes, shown for each of the three analysis methods and each of the four scenarios.

positive V ar(s)-optimal designs have the highest overall power, significantly better than

both Bayesian D-optimal and E(s2)-optimal designs. We note that the only significant in-

teraction involving the design construction criteria is the interaction with analysis method;

see Figure 5. Using a Tukey p-value adjustment to compare means, we find that, as seen

previously in Figure 3a, the constrained positive V ar(s)-optimal designs using the Dantzig

17



Figure 4: Average coverage based on simulations when p = 0 over all twenty designs sizes,
shown for each of the three analysis methods and each of the four scenarios.

(a) Criteria Main Effect Plot (b) Criteria*Method Interaction

Figure 5: Criteria main effect and interaction plot of power when effect signs are known.
Note the y-axis is adjusted to show proportions.

selector have a significantly higher average power than any other criteria/method combina-

tion.

A formal analysis of the Type I error rate counts (R2 ≈ 93%) fails to produce a significant

main effect of design construction criteria. There is a significant two-factor interaction

involving the design construction criteria and analysis method; see Figure 6b. A Tukey

analysis shows that Forward Selection using AICc for all criteria has the highest Type I

error rate.
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(a) Criteria Main Effect Plot (b) Criteria*Method Interaction

Figure 6: Criteria main effect and interaction plot for Type I error rate when effect signs
are known. Note the y-axis is adjusted to show proportions.

4.5 Effect of Misspecifying Effect Directions

Based on the simulations in the previous section, the constrained positive V ar(s) criterion

produces designs with higher power and similar Type I error rates when all of the effect

directions are correctly specified. Previous results (Weese et al., 2015) suggest that when

effect directions are randomly assigned, the constrained positive V ar(s) criterion loses its

advantage, though in Weese et al. (2015) the positive E(s) constraint had not been imposed.

To clarify further, we perform simulations in which we systematically vary the proportion

of misspecified effects.

Figures 7a and 7b show the average power and Type I error for each of the criteria,

for each value of p and each scenario across all design sizes. When comparing the rows of

Figure 7a, we notice that the advantage of the constrained positive V ar(s) designs are most

pronounced for p = 0, still evident for p = 0.25, but mostly disappear when p = 0.5. In

other words, as long as most of the effects are specified correctly, the difference between the

design criteria appears to exist, but even if the experimenter simply guesses, the constrained

positive V ar(s) designs will still perform as well as the standard supersaturated designs.

A two-factor interaction model was fit to the power simulation data depicted in Figure

7a, where again we take as the response the square root of the counts of correctly identified

effects (R2 ≈ 94%). We use as factors: p, Criteria, Scenario, Method, n, and k. Figure

8 shows the main effect plot of Criteria (p-value < 0.0001) as well as the interaction plot

between Criteria and p (p-value = 0.0032). These results confirm what Figure 7a suggested:
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(a) Power

(b) Type I Error

Figure 7: Average power and Type I error by design criteria over all twenty designs sizes,
shown for each of the three analysis methods, every value of p, and each of the four scenarios.

when the effect signs are correctly or mostly correctly specified the constrained positive

V ar(s) designs are more powerful, but even when signs are misspecified the constrained

positive V ar(s) designs are no worse than standard designs (Figure 8b).
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(a) Criteria Main Effect Plot (b) Criteria*p Interaction

Figure 8: Criteria main effect and interaction plot of power over all values of p. Note the
y-axis is adjusted to show proportions.

5 Conclusions

Supersaturated designs are typically employed to screen a few factors from many candidates.

They have great potential to aid in discoveries in a resource-efficient manner, but this

potential is limited by their power to detect the effects that are active. In this article, we have

presented a criterion that produces designs with markedly higher power than traditional

supersaturated designs, when effect directions can be specified in advance. Even when

effect directions are misspecified, however, the proposed designs are not inferior. Further,

we have presented an algorithm that takes advantage of the structure of these SSDs for

efficient design construction.

In a screening experiment, it is more important to identify the active effects than to

ensure that no spurious factors are included. Thus, the combination of a design and an

analysis method that increases power is of interest in this setting, even at the expense of

somewhat elevated Type I error rates. However, for the range of experimental scenarios

explored in this article, the constrained positive V ar(s)-optimal designs have produced

increased power without any discernible rise in the rate of false positives.

As noted by a referee, an alternative to our criterion as presented in Section 2.2 (equations

(3) and (4)) could be to minimize V ar(s) subject to a constraint on the maximum absolute
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correlation between design columns. In other words, select a design D which minimizes

V ar(s) = E(s2)− E(s)2

=
2

k(k + 1)

∑
1≤i<j

s2ij −

 2

k(k + 1)

∑
1≤i<j

sij

2

(10)

subject to

max |rij | < c, (11)

where rij is the correlation between columns i and j. An initial reaction is that this

suggestion would produce similar designs to our proposed criterion. The max |rij | < c

constraint would seemingly accomplish something similar to the E(s2)-efficiency constraint,

though the fact that the maximum correlation is being limited might produce interesting

differences. To ensure that the average correlation is positive (equation (10)), it is likely

that an additional constraint similar to E(rij) > 0 would need to be imposed. Further

research is recommended.

We do note the limitations of a simulation study; it is possible that scenarios could be

devised for which the Type I error rates of the proposed designs are problematically high.

Further research, using additional scenarios informed by real supersaturated experiments,

might shed additional light on the effectiveness of these designs. Interesting future work

would also include a focus on increasing the ability to detect interaction effects, as well

as a comparison with other analysis strategies which include the known effect direction

assumption, such as group screening and sequential bifurcation.

Supplementary Materials

Supplementary material for “Powerful Supersaturated Designs when Effect Directions are

Known” is included online and consists of the following:

A Designs A folder which includes all constrained positive V ar(s)-optimal designs, along
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with the balanced E(s2)-optimal designs

B Code A folder containing Matlab code used to generate the constrained positive V ar(s)-

optimal designs.

C Additional Simulations A document providing simulation results when only active

factor signs are misspecified.
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