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Abstract  

  The use of definitive screening designs has been increasing since their introduction in 2011.  

These designs are used to screen factors as well as to make predictions. We assert that the choice of 

analysis method for these designs depends on the goal of the experiment, screening or prediction.  In 

this work we present simulation results to address the explanatory (screening) use as well as the 

predictive use of definitive screening designs.  To address the predictive ability of definitive screening 

designs, we use two five‐factor definitive screening designs and simultaneously‐run central composite 

designs case studies on which we will compare several common analysis methods.  Overall we find that 

for screening purposes, the Dantzig selector using the BIC statistic is a good analysis choice, however, 

when the goal of analysis is prediction Forward selection using the BIC statistic produces models with a 

lower mean squared prediction error. 

Keywords: explanatory modeling; predictive modeling; best‐subsets; Dantzig selector; Forward 

selection; test data 

  

1. Introduction  

Definitive screening designs (DSDs), introduced by Jones and Nachtsheim (2011) for screening in the 

presence of second‐order effects, have recently become popular in industry (Erler et al. (2012), Ramsey 

et al. (2015)).  Practitioners have begun to use a single DSD in place of the traditional low‐resolution 

screening and response surface design combination, to reduce the experimental run requirement and 
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cost.  Examples of the use of DSDs for prediction are given in Renzi et al. (2014), Libbrecht et al. (2015), 

Erler et al. (2012), Ramsey et al. (2015) and Hercht et al. (2015).   

Shmueli (2010) discusses modeling choices dependent on the goal of the analysis: predicting or 

explaining. She defines explanatory modeling as modeling to discover a causal relationship and 

predictive modeling as modeling where the singular goal is to predict the response.  For example, when 

analyzing a designed experiment where the goal is to build a model for prediction the principle of 

heredity might be ignored in favor of smaller standard errors. But when the goal is interpretation, a lack 

of heredity can lead to a model that is hard to interpret.   Consider the example from Montgomery et al. 

(2005) of a 23 design with three replicates to study the effects on the life of a cutting tool.  Analysis 

reveals that factors B, C and A*C are important (p-value<0.05) and the main effect A is not important (p-

value=0.8833).  If the model is fit ignoring effect heredity (B, C and A*C), the MSE=28.817 and the 

estimated variance of prediction at the design corners is 4.8028.   If the model is fit that obeys effect 

heredity, (A, B, C and A*C) then MSE=30.296 and the estimated variance of prediction at the design 

corner is 6.3121.  Inclusion of the insignificant term preserves effect heredity to the detriment of the 

prediction interval width, but possibly better accuracy.   Shmueli (2010) on pg. 296 notes the difference 

between the experimental goals of factorial designs and response surface methods (RSM).  She notes 

that factorial designs are “focused on causal explanation in terms of finding the factors that affect the 

response” and response surface methods are “aimed at prediction”.  DSDs are used for both screening 

and prediction purposes. 

This duality leads to interesting questions when deciding on the analysis strategy.  There is a 

different approach to an analysis when the goal is to find the important driving factors (explanatory 

analysis) as opposed to prediction (predictive analysis).  Jones and Nachtsheim (2011) suggest an 

analysis of a DSD following the procedure of Hamada and Wu (1992) enforcing strong effect heredity.  
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This procedure will produce nice explanatory models; those models might not be the best in terms of 

prediction. 

In this paper we investigate the analysis of definitive screening designs in two ways.  First, we 

investigate different analysis methods for using DSDs as intended, for screening in the presence of 

second‐order effects.  Then we compare different analysis methods when the goal of using a DSD is to 

make predictions. We evaluate predictive ability in two ways: using in‐sample metrics and out‐of‐sample 

metrics (Shmueli 2010). The best way to evaluate a predictive model is to use “out‐of‐sample” metrics, 

such as mean squared prediction error (𝑀𝑆𝑃𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑚
𝑖=1 ), calculated on a test dataset of size m.  

In the field of design of experiments, where the primary goal is to gain the maximum amount of 

information from the fewest possible observations, creating a test dataset is not typically feasible and 

thus “in‐sample” metrics are used to evaluate prediction, i.e. R2 or the PRESS statistic (Allen (1971)). We 

compare the in‐sample predictive power of each analysis method using the PRESS statistic.  We evaluate 

out‐of‐sample prediction ability of each analysis method with MSPE, calculated on a test dataset. The 

“test set” was created by simultaneously‐running a central composite design (CCD) with a DSD.  We 

treat the DSD as a “training” dataset and use it to the construct models and treat the CCD as a test 

dataset to compare the predictive ability of each model.  In this manner we directly compare the 

accuracy of the predicted values generated from the model fit on the DSD against the actual responses 

from the CCD.  The advantage is that this comparison is made under real experimental conditions, not 

using simulation.  

2. Definitive Screening Designs  

DSDs introduced by Jones and Nachtsheim (2011) have the following appealing properties: (1) each 

of the k factors has three levels, (2) all main effects are uncorrelated with two‐factor interactions, (3) no 

two‐factor interactions are completely confounded, (4) quadratic effects are completely orthogonal to 
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main effects and no quadratic effects are completely confounded with any two‐factor interactions, (5) 

for DSDs in six or more factors, a full second-order model is estimable in three or fewer factors, and (6) 

the number of required runs (n) is only one more than two times the number of factors.  Xiao et al. 

(2012) improved upon the designs of Jones and Nachtsheim (2011) showing that DSDs can be 

constructed by stacking two m x m conference matrices and adding a center run.  They also showed how 

conference matrices can be used to construct orthogonal DSDs for an odd number of factors.   Jones and 

Nachtsheim (2013) constructed DSDs to allow for the inclusion of any number of categorical factors, but 

the analysis of those designs are not discussed in this work.   

  The main complication in analyzing DSDs arises from the possibility that both interactions and 

quadratic effects are active since those effects are correlated.  Jones and Nachtsheim (2011) 

recommend analyzing these designs using Forward stepwise selection with the AICc statistic as the 

stopping criterion.  If quadratic and interaction effects are found to be active, they recommend using 

Best‐subsets regression to identify any model confounding.  Note that Jones and Nachtsheim (2011) 

enforce strong effect heredity in their implementation of Forward stepwise regression and for their 

implementation of Best‐subsets regression they fit all possible models with 10 or fewer first‐ and 

second‐order terms.  

2.1 Previous Studies  

Dougherty et al. (2015) compared the performance of a nine‐factor DSD with that of a nine‐factor 

fractional Box‐Behnken design (FBBD) with respect to effect heredity and effect sparsity for four 

different cases and two different noise levels.  They analyzed the nine‐factor DSD with Forward stepwise 

regression enforcing strong heredity as recommended by Jones and Nachtsheim (2011) and the FBBD 

with a factor‐based Backward elimination recommended by Edwards and Mee (2011).  They find that 

when strong heredity is present, the DSD performs best but attribute that to the fact that the analysis 
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method enforces strong heredity.  They note that the DSD struggles to find active quadratic effects.   

Jones and Nachtsheim (2011) provide a small simulation study using the computer generated DSDs with 

k = {6, 8, 10, 12} and compare them in terms of power.  They show that power increases as the number 

of runs, n, increases, the main effects have high power, the power for interactions is less than that of the 

main effects, and the quadratic effects have the lowest power.   We expand upon the analysis of 

Doughtery et al. (2015) and Jones and Nachtsheim (2011) by using the Dantzig selector, Best‐subsets 

regression, and Forward selection.  We do not enforce any heredity restrictions into the analysis 

methods.  In a recent paper, Jones and Nachtsheim (2017) suggest that all DSD designs should be 

modified in their construction by adding two “fake” factors, subsequently adding four more runs to the 

standard n=2k+1 DSD design size. However, we only consider the traditional DSD sizes.  Errore et al. 

(2017) also perform a simulation study analyzing DSDs but do not address predictive ability in their 

simulations.  They recommend that standard DSDs can be used to identify terms as long as the number 

of active terms is less than n/2.   

3. Analysis Methods  

We implement each of analysis methods described in this section using two model selection 

criterion, the corrected Akaike Information Criterion (AICc) and the Bayesian Information Criterion (BIC), 

as both are used in the design literature.  As we are discussing two different analysis strategies, causal 

experimentation versus predictive experimentation, the best criteria for model selection might vary 

based on the analysis goal.  In the rest of the paper we assume a standard linear model for a set of p 

effect columns constructed from the k factor columns in a DSD.  The model takes the form  

𝑦 = 𝑋𝛽 + 𝜀                                          (1) 

where y and ε are n x 1 vectors, β is a (p+1) x 1 vector, and the elements of the error vector are 

independent with E(εi) =0 and Var(εi)=σ2. 
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The Gauss-Dantzig selector, introduced by Candes and Tao (2007) and first used to analyze 

supersaturated designs by Phoa et al. (2009), has been shown to be useful for identifying active factors 

in supersaturated designs in several recent studies (Weese et al. (2015), Draguljić et al. (2014) and 

Marley and Woods (2010)).  The Dantzig selector, a shrinkage method especially useful for when p>n, 

chooses terms that are consistent with the data and satisfy 

𝑚𝑖𝑛‖�̂�‖
1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑋𝑡(𝑦 − 𝑋�̂�)‖
∞

≤ 𝛿.   (1) 

Use of the Gauss-Dantzig selector (a two stage procedure) requires the specification of two 

tuning parameters γ and δ.  γ is a threshold parameter to determine an active factor and δ is the 

shrinkage parameter.  We use the automated procedure described by Phoa et al. (2009): 

1. Compute 𝛿0 = 𝑚𝑎𝑥|𝑥𝑖
𝑡𝑦|. 

2. Solve equation (1) for each value of δ over the range 0 ≤ δ ≤ δ0. 

3. Identify the active effects as those whose coefficient estimates are larger γ than for each 

value of δ. 

4. Using the effects identified in step (3), fit a linear model and obtain a value for the 

model section criterion (i.e. AICc or BIC). 

5. Choose the model that has the best value of the chosen criterion.  

We set γ=1.5 based on the true effect sizes and random error present in our simulation scenarios 

consistent with Marley and Woods (2010). 

Weese et al. (2015) and Marley and Woods (2010) have shown success in terms of power by 

implementing the automatic selection procedure using the BIC statistic while Draguljić et al. (2014) used 

the AICc statistic.  Although a DSD is not a supersaturated design when all effects are considered the full 

model matrix will be supersaturated and for this reason Krishnamoorthy et al. (2015) used the Dantzig 
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selector to analyze no‐confounding designs and Errore et al. (2017) use the Dantzig selector to study 

DSDs but did not use the BIC statistic as the section criterion.  Other regularization methods that have 

been considered in the analysis of supersaturated designs i.e. LASSO, Elastic Net etc. However, Draguljić 

et al. (2014) showed that the Gauss-Dantzig selector outperformed the LASSO. Given the evidence in 

favor of the Gauss-Dantzig selector we chose to include it in our study.   

   We compare the performance of the Gauss-Dantzig selector with Best‐subsets regression and 

Forward stepwise selection using either the BIC and AICc as the selection statistic.   Forward stepwise 

selection has the advantage that it is widely available for use in many commercial statistical packages.  

Best‐subset regression was recommended for use if model confounding is present and will serve as our 

benchmark with which to compare the Gauss-Dantzig selector, but we recognize that Best‐Subsets 

regression is computationally burdensome. In the simulations that follow, we restrict the maximum 

number of effects in a model to be nine and we score the top 56 models of each size (for computational 

considerations).  All analysis methods were run in R.   

4. Explanatory and In‐sample Prediction Evaluation   

To get a direct comparison of the three analysis methods (Gauss-Dantzig selector, Forward Selection 

and Best‐subsets regression) for screening important factors we performed simulation studies with k={5, 

6, 7, 8, 9, 10} using DSDs constructed in JMP 11.2 which employs the constructions of Xiao et al. (2012).  

We use each analysis method with AICc and BIC as the selection criteria for a total of six analysis 

methods.  Four different experimental scenarios were used to assess the Power (proportion of active 

factors identified), Type I error (proportion of incorrect inactive effects identified as active), False 

Discovery Rate (proportion of effects identified as active that are actually inactive) and the average 

number of active factors identified.  We subsequently calculated the measures under various simulation 

conditions, including models generated with varying degrees of effect heredity, strong or weak.  We 
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define strong heredity such that a two factor interaction can only be declared active if both 

corresponding main effects are chosen to be active and weak heredity if an interaction can be declared 

active given one of the involved main effects are active.  We only consider strong heredity for the 

quadratic effects meaning the corresponding main effect must be active for the quadratic effect to be 

chosen as active. 

The parameter τ in Table 1 defines the magnitude of the effect and the parameter a in Table 1 

defines the number of each effect types that are active.  For example, in the first simulation scenario 

where a =floor(n/3) for the main effects, using the DSD with n=13, k=5 the true model contains four 

randomly assigned active main effects with a magnitude of ±6. The effect signs are assigned randomly.  

The single active quadratic effect and interaction effects are chosen based on strong heredity from the 

randomly assigned active main effects and have a magnitude of ±3.  The magnitudes of the main and 

interaction effects in the first simulation scenario mimic conclusions by Li et al. (2006) and their 

empirical study of active effects in unreplicated full factorial designs.  They found that main effects are 

larger in magnitude than two‐factor interactions and the majority of all active effects are main effects.  

Scenarios 2 and 4 assign all effects the same magnitude with the difference being scenario 2 ensures 

strong effect heredity and scenario 4 ensures weak effect heredity to assign the true active effects.  

Scenario 3 simulates a system with strong second‐order effects that dominate the main effects. Note 

that we make no adjustments in the analysis for the differences in the true models.  To analyze the 

simulations, we will treat our 144 separate simulations results as responses to a 4 x 6 x 6 factorial design 

as we have 4 Scenarios, 6 DSD sizes and 6 analysis methods. 

In all scenarios the columns are chosen randomly and according to the stated heredity of the 

true model.  We assume that changing an active factor will produce a change in the response and that 

changing an inactive factor results in no change in the response.  Consequently, all inactive effects are 
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assigned a coefficient of 0.  For each of 1000 iterations, a response is generated according to equation 

(1) where 𝜀~𝑁(0,1).  

 Table 1: Simulation scenario protocol where a is the number of columns chosen to be active and τ is the 

active effect magnitude.   Effect direction (+/‐) was randomly assigned.  

  Main Effects  Quadratic Effects  Interaction Effects    

Scenario  a  τ  a  τ  a  τ  Heredity  

1  n/3  6  1  3  1  3  Strong  

2  3  6  3  6  3  6  Strong  

3  n/4  3  2  9  2  9  Strong  

4  3  6  3  6  3  6  Weak  

  

 To compare the analysis methods in terms of in‐sample predictive ability we tabulated the 

number of times each analysis method found the model with the lowest PRESS statistic where PRESS =

∑ (𝑦𝑖 − �̂�𝑖−1)2𝑛
𝑖=1 .  The PRESS statistic is computed by omitting the ith observation from the fitted 

models.  Note that when methods find the same model, each method is given credit for finding the 

lowest PRESS statistic.  We provide results of the out-of‐sample prediction evaluation of each analysis 

method the next section.   The simulation protocol is as follows.  For each of 1000 iterations: 

1. Generate the response, y, according to specified scenarios in Table 1 and using equation (1).  

2. Fit a model using each analysis method using the response generated from step (1). 

3. Tabulate simulation statistics (overall power, Type I error, False Discovery Rate (FDR), model 

size, and power for each effect type).  

4. Calculate the PRESS statistic for the selected model by each method. 

5. Rank the models by the PRESS statistics, lowest to highest.   

6. Tabulate the number of times each method found the model with the lowest PRESS statistic. 
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4.1 Explanatory Evaluation  

Figure 1 and Table 2 display the power, Type I error rate and FDR averaged over all four 

simulation scenarios.  Forward selection using the BIC statistic has the highest overall average power 

(0.711) but at the cost of the highest overall average Type I error rate (0.285).  The Gauss-Dantzig 

(Dantzig) selector using the BIC has the second highest overall average power (0.705) with a much lower 

overall Type I error rate (0.092).  The Dantzig selector using AICc has the lowest overall Type I error rate 

(0.059), but also the second lowest average power (0.574).  Although we are pointing out differences 

between the analysis methods, it should be noted that the differences in average power ranges only 

about 9%.  Forward selection using BIC had the highest overall False Discovery Rate (FDR) of 0.48. The 

Dantzig selector using AICc and Best Subsets using AICc had the lowest FDR of 0.200 and 0.199 

respectively, less than half of that of Forward selection with BIC.   

 

Figure 1: Overall power, Type I error and False Discover Rate (FDR) by method across all four 

scenarios 
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Table 2: Simulation results averaged over designs sizes and simulation scenarios. 
 

Method 
Average 
Power 

Average 
Type I Error 

Average 
FDR 

Forward BIC 0.711 0.285 0.482 

Dantzig BIC 0.705 0.092 0.232 

Best BIC 0.660 0.147 0.304 

Best AICc 0.657 0.07 0.199 

Dantzig AICc 0.607 0.059 0.200 

Forward AICc 0.574 0.088 0.278 

 

 

  Figure 2 displays the average power in each of the different simulation scenarios.  Overall the 

DSDs perform best in the scenario 1 with limited second‐order effects and dominant main effects.  This 

is consistent with the findings of Jones and Nachtsheim (2011).  There is little difference in power across 

all methods between scenario 2 (0.507), which generated the response using strong heredity in the true 

model, and scenario 4 (0.510) where the true model was generated using weak heredity.  This is not 

surprising since our analysis methods did not take into account any effect heredity.  Errore et al. (2017) 

did show an obvious gain in power when the true model is generated using strong heredity and the 

analysis method is forced to obey strong heredity.  Scenario 3 contained dominant second order effects 

and fewer main effects than scenario 1 and had an average power of 0.633.  The Dantzig selector using 

BIC had the highest average power in scenarios 2, 3 and 4 and the fourth highest power in scenario 1, 

although the average in scenario 1 was still 0.940.  
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Figure 2: Power, Type I error and FDR by method by scenario.  Note that the only difference between 

scenario 2 and 4 is strong vs. weak effect heredity in the generated “true” model.  

 

To strengthen our conclusions from the descriptive analysis we develop a model for power and 

treat Scenario, Method and DSD size (n,k) as factors fitting all main effects and two factor interactions.  

The model using raw power was ill-fitting via the standard residual analysis.  As a result, we chose to 

model the square root of the number correctly identified active factors.  This model (R2=0.98) met the 

standard regression assumptions.  The Method main effect and each interaction involving Method were 

found to be significant (p-value <0.0001).  A Tukey multiple comparison test shows that Forward 

Selection with BIC and the Dantzig Selector using BIC have significantly higher power than the other 

methods but are not different from each other.   Figure 3a shows an interaction plot of the 

Scenario*Method interaction.  Interestingly, Forward selection with AICc gives virtually no difference in 

power between Scenarios 2, 3 and 4, where all the other methods show a similar pattern.  The Dantzig 

selection using BIC performs slightly better in scenario 4 than 2.  Figure 3b shows an interaction plot of 



13 
 

the Method by DSD size interaction and it is evident that the larger DSDs have more equivalent power 

by method than the smaller designs.   It seems power does not become robust to analysis method until 

n>17.  Similarly, a formal analysis of the square root of the Type I Error counts (R2=0.99) with Method, 

Scenario and DSD size (n,k) as factors shows the Method main effect as well as the interactions involving 

Method to be significant (p-value <0.0001).  A Tukey multiple comparison test shows that Forward 

Selection with BIC as the highest Type I Error rate and Best-subsets with AICc and Dantzig with AICc have 

the lowest Type I Error rate.  Figures 4a and 4b show the interaction plots of the Scenario by Method 

and DSD size by Method interaction for the Type I error rate.  Figure 4b shows that Forward selection 

with BIC has a higher Type I error rate of all the methods for even the larger design sizes.  Lastly a formal 

analysis of the square root of the counts of False Discoveries (R2=0.97) reveals all main effects and 

interactions involving Method as significant (p-value <0.0001).  Figures 5a and b show the Method by 

Scenario and the Method by DSD size interaction plots.   Most notably Figure 5b shows that for all 

methods, the FDR stays relatively flat with increasing design size. 

 

(a)                                                                    (b) 

Figure 3a and b: Interaction plots of the Scenario by Method Interaction (3a) and Method by DSD size 
interaction (3b) for a model with square root of Power counts as the response. Note the y-axis is 

adjusted to show Power. 
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                              (a)                                                                                     (b) 

Figure 4a and b: Interaction plots of the Scenario by Method Interaction (4a) and Method by DSD size 
interaction (4b) for a model with the square root of the Type I error as the response. Note the y-axis is 

adjusted to show Type I Error Rate. 

 

 

 

 

(a)                                                                              (b) 

Figure 5a and b: Interaction plots of the Scenario by Method Interaction (5a) and Method by DSD size 
interaction (5b) for a model with False Discovery Counts as the response. Note the y-axis is adjusted to 

show False Discovery Rate. 

 

Figure 6 shows the breakdown of the average power by effect type (main effect, interaction, 

quadratic), scenario and analysis method.  As expected the main effects have the highest average 

power, although it is notable that Forward selection and the Dantzig selector using AICc have the lowest 

average main effect power in scenarios 2, 3 and 4.  The Dantzig selector using BIC has the highest 

average power to detect the correct interactions in scenarios 2, 3 and 4, see the top row of Figure 2.  

Forward selection with BIC seems to have the highest power to detect the quadratic effects.   It is 
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notable in Figure 8 that Best‐subsets regression using the BIC statistic tended to produce models with 

nine terms, which was set as constraint in the implementation of the method.   To strengthen our 

conclusions as we fit a model using Method, Scenario and DSD size (n,k) for the three responses: the 

square root of Power count of Quadratic effects (R2=0.98), the square root of Power count of 

Interactions (R2=0.99), and the square root of the Power Count of Main Effects (R2=0.97).  The Method 

main effects and two factor interactions involving Method were highly significant (p-value <0.001) for 

the main and quadratic effects and significant (p-value<0.0215) for the interactions.  A Tukey’s multiple 

comparison test shows that the Dantzig selector and Forward Selection using AICc have significantly 

lower power to detect the main effects, the Dantzig selector using the BIC has significantly higher power 

to detect the Interaction effects and that Forward Selection with BIC has the highest power to detect the 

quadratic effects and Dantzig using the AICc has the lowest.   

 

Figure 6: Power based on effect type across all four scenarios. 
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The interaction plot between Method and DSD size when the power of the main effects is the response 

looks very similar to Figure 3b indicating the larger designs sizes are fairly robust to the choice of 

analysis method.  However, the interaction plots of the Method by DSD size interaction when the 

response is the power to detect the interactions (Figure 7a) and the power to detect the quadratic effect 

(Figure 7b) show a less dramatic difference in the power as the design size increases. 

 

 

(a) 

 

(b) 

Figures 7a and 7b: Interaction plots of the Method by DSD size for y= square root of the power counts 

for interactions (7a) and Method by DSD size interaction (7b) for a model with y=square root of the 

power counts for the quadratic effects.  Note the y-axes have been adjusted to show Power. 
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Figure 8:  Average number of effects found by method for each scenario. 

 

4.2 In‐Sample Prediction Evaluation  

It is interesting that the methods with the highest power were not also the methods that had 

the lowest PRESS.  Best‐subsets regression using AICc was the analysis method that most often had the 

lowest PRESS statistic (see Figure 9a) indicating that the goal of the experiment might be considered 

when choosing an analysis method.  Best‐subsets using AICc was clearly dominant for the smaller 

designs, but as k increased (and subsequently n) the effect dissipated (Figure 9b).  
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     (a)                                                                                            (b)  

Figures 9a and b: The number of times each method had the lowest press score across design size and 

scenario.  And the minimum PRESS over scenario by k. Note, ties are included.  

  

5. Out‐of‐Sample Prediction Evaluation   

  To evaluate prediction using out‐of‐sample methods we use a test dataset.  In the field of 

designed experiments, test data is typically not available. It is standard practice to perform confirmatory 

runs to verify process settings or a process optimum, but it is not standard to use those runs to select 

the model.  Model selection is typically done using in‐sample metrics.  In the following two case studies 

we have access to test datasets which are simultaneously‐run central composite designs, using the same 

factors as each DSD and run under similar experimental conditions.  In a typical predictive modeling 

procedure, the model is selected based on the performance on test data.  In this case we are not using 

test data to aid in model construction but as a means to evaluate the models constructed by the 

different analysis methods using the DSD.  We will use the CCDs as a test dataset and evaluate each of 

the models chosen on the DSD by the different analysis methods based on mean squared error of 

prediction (MSPE).  Note the predicted values in the MSPE are generated from the design points of the 

CCD using the models found by analyzing the DSD.  We determine the best model as the one which has 
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the lowest 𝑀𝑆𝑃𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑚
𝑖=1  on the test dataset (in this case the CCD) where m is the number of 

samples in the CCD.    

The goal of the first experiment (Ramsey and Ornek (2013)) is to optimize the biomolecule yield 

of the fermentation step in a bio‐process.  The k=5 factors used are pH of the fermentation solution 

(pH), Dissolved Oxygen (%DO), Induction Temperature, Induction OD600 (biomass at which the 

induction is initiated as measure by optical density at 600 nm), and Feed Rate of a growth media.  This 

experiment was performed prior to the construction recommendations of Xiao et al. (2012) and as such 

the design used was constructed according to Jones and Nachtsheim (2011) with n=11 unique treatment 

combinations. Additionally, four center point replications were added to obtain an error estimate.  The 

corresponding CCD had n=26 experimental runs with five additional center points for a total of n=31 

runs with axial runs of ±1.3 chosen based on process knowledge.  The second case study is also a k=5 

factor DSD, but using Xiao et al. (2012).  The goal of the experiment is to optimize an analytical method 

for glycoprofiling.  Glyocoprotiens are the largest group of biologically‐derived drugs and currently there 

is a lack of a universal analysis technique for glycosylation analysis.  The five factors in this experiment 

are Initial %NaOAc (%A), Initial %NaOH (%B), Gradient_01 (mM NaOAc/min), Gradient_02 (mM 

NaOAc/min) and Gradient_03 (mM NaOAc/min).  The corresponding face centered CCD had 28 

experimental runs and face centered axial runs. As typical in a predictive modeling situation, we fit 

models using the training dataset, the DSD, and compare the models using the test dataset, the CCD.  

The six different models will be generated by the different analysis methods and selection criteria.  The 

procedure is a follows:  

1. Using one of the analysis method/selection statistic combinations (Dantzig selector, 

Forward Selection and Best subsets regression), find the best model using the responses 

and factor combinations of the DSD. 
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2. For each of the six models, generate �̂�𝑖  values using the design points of the CCD. Note 

for the Dantzig selector we will fit a standard linear model to obtain the coefficient 

estimates. 

3. Calculate the MSPE as in equation (3) using the �̂�𝑖  values from step (2) and the true 

responses from the CCD as 𝑦𝑖. 

4. Rank the analysis methods according to lowest MSPE.  

Table 3: Summary of the out‐of‐sample prediction evaluation for each analysis method by average 

squared error for the Fermentation Experiment.  

Method Model MSPE on CCD 

Forward Selection BIC  X5 X1:X2 X2 X32 X1 X3:X5 X4 X3 X3:X4 2997.956  

Best‐subsets Regression BIC  X1 X2 X3 X4 X5 X52 X2:X5 X3:X5 3930.691  

Best‐subsets Regression AICc  X1 X2 X5 X52 X3:X5 4464.483  

Dantzig BIC, γ=1.5  X1 X2 X3 X4 X5 X12 X22 X32 X42 X52 4688.713  

Forward Selection AICc  X5 X1:X2 X2 6924.568  

Dantzig AICc, γ=1.5  null 13721.883 

  

Table 4: Summary of the out‐of‐sample prediction evaluation for each analysis method by average 

squared error for the Glyoprofiling experiment.  

Method Model MSPE on CCD 

Forward Selection BIC  X1 X12 X1:X2 X2 X4 X1:X3 X5 X3:X4 0.06376  

Forward Selection AICc  X1 X12 X1:X2 X2 X4 X1:X3 0.06449  

Best‐subsets Regression BIC   X1 X2 X4 X5 X12 X1:X2 X1:X3 0.06726  

Dantzig, BIC γ =0.5 X1 X2 X12 X22 X32 X52 X1:X2 X2:X3 0.07328 

Best‐subsets Regression AICc  X1 X2 X4 X12 X1:X2 0.08057  

Dantzig AICc γ=0.5 X1 X12 X22 X32 1.2445 

Dantzig, BIC γ=1.5  X1 X12 X52  1.2448 

Dantzig AICc  γ=1.5  X1 X12 X52  1.2448 

  

The method that seemed to have the best in‐sample prediction evaluation by the PRESS 

statistic, Best‐subset regression using AICc, does not have the best out‐of‐sample prediction evaluation.  

In both case studies Forward selection using BIC gives the lowest value of the MSPE on the test dataset.  

Forward selection using BIC did perform well in the power simulations, but it had a large Type I error 
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rate.  Although a high Type I error rate might be acceptable in a screening situation a method with 

similar power and a lower Type I error rate is preferable.  The best screening or explanatory method, 

Dantzig selector using the BIC statistic, did not perform as well in the out‐of‐sample prediction 

evaluation, see Tables 3 and 4.  Note that for the Gauss-Dantzig selector different values of γ will change 

the model selected by the Gauss-Dantzig selector.  A smaller value will allow more terms to be 

considered at each value of δ. For the Fermentation experiment, lowering the value of γ does not 

change the number of terms considered at each value of δ since all coefficient estimates are larger than 

1.5. For the Glycoprofiling experiment a smaller value of γ is preferred due to the magnitude of the 

coefficient estimates.   For further guidance on choosing γ see Candes and Tao (2007).  Both 

experiments show disagreement amongst the chosen models.   

Thus far we have compared the average prediction performance of each model selection 

method using in-sample or out-of-sample methods.  Practitioners are often concerned with the ability to 

predict a single point in the design region (i.e. the predicted minimum or maximum) and as such we 

evaluated the DSD and model selection method on the individual prediction at the maximum response 

using the Gycloprofiling and Fermentation experiments.  We use the maximum predicted value from the 

full second order model fitted to the CCD as the metric against which to judge the quality of prediction 

from the DSD and model selection method.  Tables 5 and 6 give the individual values and the 95% 

prediction interval for the DSD model selection method and the benchmark, the predicted value from 

the CCD.  Interestingly, there is little disagreement between MPSE calculated using the design points 

from the CCD and the models found on the DSD (Tables 3 and 4) and the individual predictions at the 

maximum (Tables 5 and 6).   The only exceptions (noted by the changed ordering in Table 6 as compared 

to Table 4) are for Best subsets Regression using BIC and the Gauss-Dantzig selector using AICc with γ 

=0.5.   Perhaps this is due to the fact that in this experiment several large, dominant effects were 
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present.  Overall, the methods that produced the best prediction on average, also produced the best 

individual prediction for these two experiments. 

Table 5: Predicted maximum response value using the reduced models on the DSD compared to the full 
second order model fit to the CCD for the Fermentation experiment. 

Method Model Predicted 

Max 

Response 

95% PI of Max 

Predicted 

Response  

Using CCD Full Second order model 663.727 512.46, 814.994 

Forward Selection BIC  X1 X2 X3 X4 X5 X33 X1:X2 X3:X5 X3:X4 606.924 526.979, 686.869 

Best‐subsets Regression BIC  X1 X2 X3 X4 X5 X52 X2:X5 X3:X5 522.681 462.878, 582.484 

Best‐subsets Regression AICc  X1 X2 X5 X52 X3:X5 509.7855 454.358, 565.213 

Dantzig BIC, γ=1.5  X1 X2 X3 X4 X5 X12 X22 X32 X42 X52 483.6595 425.117, 542.202 

Forward Selection AICc   X2 X5 X1:X2  519.0221 437.198, 600.846 

Dantzig AICc, γ=1.5  null - - 

 

Table 6: Predicted maximum response value using the reduced models on the DSD compared to the full 
second order model fit to the CCD for the Glycoprofiling experiment. 

Method Model Predicted 

Max 

Response 

95% PI of Max 

Predicted 

Response  

Using CCD Full Second Order Model 13.88527 13.0304, 14.7401 

Forward Selection BIC  X1 X2 X5 X4 X12 X1:X2 X1:X3 X3:X4 13.82082 13.1951, 14.4465 

Best‐subsets Regression BIC   X1 X2 X4 X5 X12 X1:X2 X1:X3 13.75837 13.1612, 14.355 

Forward Selection AICc  X1 X2 X4 X12 X1:X2 X1:X3 13.58997 12.9681, 14.2118 

Dantzig, BIC γ =0.5 X1 X2 X12 X22 X32 X52 X1:X2 X2:X3 13.3949 12.2477, 14.3132 

Best‐subsets Regression AICc  X1 X2 X4 X12 X1:X2 13.33993 12.7743, 13.9055 

Dantzig, BIC γ =1.5  X1 X12 X52  11.94555 10.3429, 13.5482 

Dantzig AICc γ =1.5  X1 X12 X52  11.94555 10.3429, 13.5482 

Dantzig AICc γ =0.5 X1 X12 X22 X32 11.46669 9.53725, 13.3961 
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6. Discussion and Conclusions  

We have shown that the choice of analysis to use for an experiment run with a DSD is 

dependent on the application of the DSD as either a screening design or a design for prediction.  We 

should note that successful use of a DSD in place of a larger response surface and screening design 

combination requires that practitioners have defined the correct experimental region. Foregoing the 

initial steps of screening and steepest accent does increase the risk of not finding the optimum 

response.  In many ways, the dual usage of a DSD makes it a great design to consider for an initial 

experiment, although we have also shown the conclusions from a smaller DSD will be more dependent 

on the choice of analysis method than those from a larger DSD.  In terms of explanatory modeling or 

screening, we can recommend the Dantzig selector using the BIC statistic for several reasons.  First, it 

had some of the highest overall power for the different effects types as well as lower Type I error rates.  

The Dantzig selector using BIC is going to have better power to detect the interaction effects when the 

true model is dominated by second‐order effects or the magnitude of those effects is similar to the main 

effects.  When the application of a DSD will involve prediction, we recommend analyzing the results with 

Forward selection using the BIC statistic.  Forward selection using the BIC statistic also is nota poor 

choice for screening, but one can expect high Type I error rates.  Overall, the methods with the BIC 

statistic seemed to perform better with the exception of the in‐sample prediction evaluation in which 

case Best‐subsets regression using the AICc statistic was found to have the lowest PRESS in the majority 

of cases considered.   We believe that the differences between the analysis methods are due to the 

difference in experimental goals. However, as suggested by a reviewer the differences between the 

analysis methods could be due to the fact that the true models for the Fermentation and Glycoprofiling 

experiments are not as sparse as the models we presented in our simulations.  When one suspects the 

true model will not have sparsity, it might be prudent to consider the addition of “fake factors” (Jones, 
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B. and Nachtsheim, C.J. (2017)) or design augmentation.  Additionally, it should be noted that in the 

simulations we summarized the prediction performance on the individual design points.   

  The DSDs seem to perform best when the true model is dominated by strong main effects and 

has relatively few second‐order effects.  We did not investigate how the power could be improved by 

adding heredity restrictions into the model selection method. It is fairly obvious that since the main 

effects have the highest power, if the true model has strong heredity present, introducing that 

restriction would increase the power to detect the second‐order effects.  Future work on DSDs could 

include augmentation if they are used as a screening experiment and consideration of multiple solutions 

for prediction evaluation.  
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