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where are the superstaurated designs?

A quick Google scholar search for “supersaturated design” yields 671 results.

Georgiou, S.D. (2014) provides a review of design construction containing 89 references.

We have found 7 papers containing the results of an experiment using a supersaturated
design.
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research questions

Why haven’t these designs, which promise such resource-efficiency, been more widely
used in industry which so prizes efficiency?

What would it take for supersaturated designs to become a standard tool in the toolkit of
experimenters?

What can we, as researchers, do to facilitate the use of SSDs as the first choice for
screening?
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outline

1. Informal survey of the design community.
2. Discussion of screening.
3. Practical advice for using supersaturated designs (SSDs).
4. Direction of future research.
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ssd definition

Two-level supersaturated designs (SSDs) use n < k+ 1 runs to examine k factors. This
design uses n = 6 runs to examine k = 9 factors.

D =



−1 −1 −1 1 1 1 1 1 −1
1 1 −1 1 1 1 −1 −1 1
−1 −1 1 1 −1 −1 −1 1 1
1 −1 −1 1 −1 −1 1 −1 −1
−1 1 1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 1 1 1 1



We assume we wish to estimate the model with only linear main effects:

Yi = β0 +
k∑

j=1

βjxij + ϵi, i = 1, 2, . . . ,n

with ϵi ∼ N(0, σ2) and are independent.
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Informal Survey
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who did we survey?

We used our informal networks and social media to reach out to the greater design of
experiments community. The following analysis is based on 63 survey responses.
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do you read research about doe?
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commonly used designs and analysis methods
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how do people decide on the designs they use?
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do you reduce the number of possible factors?

Examples of reduction in factors:
“75 reduced to 11”
“Yes. Screen 27, RSM 5.”
“20 to 5”
“8-12 down to 6”
“15, 5”
“5 down to 3”
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what about supersaturated designs?
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user experience with ssds

“100+ factors 64 runs; failed experiment”

“Bayesian D-optimal design with many terms that were able to be estimated by the
design, but were able to be estimated after unimportant factors were removed.”

“Analytical Method Robustness testing. Successful.”

“Testing to characterize drill bit effectiveness as a function of many input
parameters. Experiment was successful due to engineering expertise for
interpretation.”
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concerns with using a ssd
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contradiction in literature

“I think it is perfectly natural and wise to do some supersaturated experiments.”–John
Tukey, 1959

“We have no experience of practical problems where such designs are likely to be useful;
the conditions that interactions should be unimportant and that there should be a few
dominant effects seems very severe.”–Kathleen Booth and D.R. Cox 1962
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contradiction in literature

“‘... we can say that one should be very cautious when using any method for constructing,
analyzing or generally using SSDs.”–Stelios Georgiou 2014

“For situations where there really is no prior knowledge of the effects of factors, but a
strong belief in factor sparsity, and where the aim is to find out if there are any dominant
factors and to identify them, experimenters should seriously consider using
supersaturated designs.”–Steven Gilmour 2006
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would you want to learn more?
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Screening
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core principles

The success of screening
experiments depends heavily on
the assumptions of effect sparsity
and effect hierarchy.
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core principles

These principles have been
empirically verified and quantified.
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traditional screening designs and analysis

Traditional screening designs are constructed with good Least Squares estimation
properties, such as a “small” covariance matrix, σ2(XTX)−1.

“Small” covariance is achieved in classical screening by ensuring a design matrix, D, has
orthogonal columns.

Is this the best strategy for a SSD where n < k?
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successful screening defined

The goal of screening is not to make precise estimates, but to identify important factors.

For example, suppose we have five factors and the first three are active, with
β1 = β2 = β3 = 5 and β4 = β5 = 0.

A penalized estimator may give the estimates β̂j = 1 for j = 1, 2, 3 and β̂j = 0 for j = 4, 5.

The screening results would be perfect, but the estimators would be poor.
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successful screening defined

To identify the truly important factors as important the SSD/analysis combination must
have high power to detect those truly active factors.

In many cases we might consider a screening experiment successful, even high power
came at a cost of increased type I error.

SSDs should be constructed to enhance factor identification, not estimation.
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structure influences analysis

Two recent example of SSDs that exploit SSD structure to maximize factor identification
are the GO-SSD approach of Jones et al. (2019) and Var(s)+ of Weese et al. (2017)
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structure influences analysis

We will focus on the approach of
Weese et al (2017) since it is more
flexible than the approach of Jones
et al. (2019).
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var(s)+ optimal ssds

Weese et al. (2017) introduced the
Var(s)+ criterion for constructing
SSDs to increase power to detect
the truly active factors.
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design construction: e(s2) optimality

Letting X = (1|D) and S = XTX = (sij) where i, j = 0, 1, . . . , k, we measure a design’s
proximity to orthogonality by examining the sij’s, the off-diagonals.

The E(s2)-measure of X is defined on balanced designs, i.e. those satisfying 1TD = 0, as

2
m(m− 1)

∑
1≤i<j≤m

s2ij . (1)

The E(s2)-criterion minimizes (1) over all balanced designs with n runs and we call such a
design E(s2)-optimal.
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design construction: constrained var(s)+ optimality

The constrained Var(s)+ criterion, which we seek to minimize, is:

Var(s)+ = E(s2)− E(s)2 s.t. E(s
2)(D∗)

E(s2) > c and E(s) > 0, (2)

where D∗ is the E(s2)-optimal design and c is a specified efficiency that determines how
near to E(s2)-optimality the design is required to be.
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comparing criteria

E(s2) Var(s)+
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the dantzig selector

The Dantzig selector (Candes and Tao, 2007), β̂DS imposes a constraint on an ℓ1-estimator:

β̂DS = argmin
β̃

||β̃||1 subject to ||XT(y− Xβ̃)||∞ ≤ δ , (3)

where || · ||∞ denotes the largest element of the argument.

β̂DS estimates are biased but still have desirable model selection properties.
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var(s)+ ssds+dantzig selector can give higher power to detect active factors

1. If the user can specify the
effect directions ahead of time.

2. If the SSD is analyzed using the
Dantzig selector.

3. If effect directions are
misspecified, the performance
is equivalent to existing
construction methods.

4. Type I error rate for
constrained Var(s)+ designs is
not larger
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comparing dantzig active coefficient magnitudes when effect direction known

∙ Generated 1000 responses
according to Y = βX+ ϵ

where ϵ ∼ N(0, 1)

∙ True active coefficients are
set to be either all 5 or all
-5 (signs are the same)

∙ Inactive coefficients are
set to 0

∙ Average Dantzig coefficient
estimates from Var(s)+
SSDs are larger when
effect directions are
known
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comparing dantzig active coefficientmagnitudeswhen effect direction unknown

∙ Generated 1000 responses
according to Y = βX+ ϵ

where ϵ ∼ N(0, 1)

∙ True active coefficients are
set randomly as 5 or -5
(signs are mixed)

∙ Inactive coefficients are
set to be truly 0

∙ Average Dantzig coefficient
estimates from Var(s)+
SSDs are similar to
coefficient estimates from
E(s2) when effect
directions are random
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Practical Advice for Users
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research based ssd size recommendations

For a successful experiment using a
SSD, Marley and Woods (2010) state the
following rules:
1. The ratio of the run size,n, to the

number of active factors, a, should
be greater than 3.

2. The ratio of the number of factors,
k, to n should be no more than 2.

We have replicated these results in
separate simulations.
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using the dantzig selector in practice

To use the Dantzig Selector on a SSD in a simulation we use the automated procedure of
Phoa et al. (2009) which requires:

1. specification of threshold, γ such that the ith factor is called active if |β̂i|δ > γ and
2. a model section statistic to choose the model at some value of δ.

We do not recommend the automated procedure for the analysis of a single experiment.

We also emphasize the importance of centering the response vector, y, and centering and
scaling X to unit variance. This is especially important when D is unbalanced since the
columns of D will be correlated with the intercept column in X.
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use a profile plot with the dantzig selector

Easy Not as Easy
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practical advice

The following recommendations help to address the concerns of ”Power/Sparsity” and
”Uninformative Analysis” from the survey respondents:

1. Keep the ratio of factors to runs less than 2.
2. Plan for the number of active effects to be sparse, specifically less than n/3.
3. Specify effect directions ahead of time (even if you have to guess).
4. Construct the SSD using constrained Var(s)+-optimality.
5. Analyze the experiment with the Dantzig Selector using a profile plot making sure to

scale properly.
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Future Research

41



next steps

1. Investigate smart follow-up experiments for SSD.
2. Inclusion of interactions and higher order terms in a SSD.
3. Further exploit the properties of regularization methods in the structure of new SSDs.
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Questions?
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Appendix
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number of runs compared to the number of active factors

∙ Generated 1000 responses
according to Y = βX+ ϵ

where ϵ ∼ N(0, 1) and
βa ∼ exp(1) + s/n where
s/n = 1 or 3.

∙ Inactive coefficients are
set to 0

∙ Average Dantzig coefficient
estimates from Var(s)+
SSDs are larger when
effect directions are
known
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