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Antibiotic resistance

Antimicrobial resistance happens when germs like bacteria and fungi develop
the ability to defeat the drugs designed to kill them.

Antimicrobial resistance is an urgent global public health threat, killing at least
1.27 million people worldwide.

In the U.S., more than 2.8 million antimicrobial-resistant infections occur each
year.

Source: https://www.cdc.gov/drugresistance/about.html



B-lactam antibiotics

Bacterial infections are most commonly treated by the use

of B-lactam antibiotics.

A common mechanism for 3-lactam resistance is the
production of B-lactamases, which hydrolyze the (B-lactam
ring, thus rendering the drugs inactive.

Source: https://en.wikipedia.org/wiki/Beta-lactam_antibiotics
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Core structure of penicillins (top) and
cephalosporins (bottom) the 2 most common
groups of B-lactam antibiotics . B-lactam ring in red.



B-Lactamases

B-Lactamases can be categorized into serine-B-lactamases (SBLs) and metallo-
B-lactamases (MBLS)

SBLs are more clinically-prevalent and there exist inhibitors, which given in
combination with B-lactam containing antibiotics, combat bacteria that produce

some of the SBLs.

There are no clinically-approved inhibitors available for MBLs, making infections
from MBL-producing bacteria a serious challenge.



New Delhi metallo-B-lactamase (NDM-1),

New Delhi metallo-B-lactamase (NDM-1) is an enzyme that

makes bacteria resistant to a broad range of beta-lactam antibiotics
NDM-1 is the most prevalent MBL worldwide.

NDM-1 functions through two zinc ions present in the active site that cause
hydrolysis of the beta-lactams, rendering them ineffective.

Inhibitors either bind at the zinc site or rip the zinc off completely.
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Finding MBL Inhibitors

Current Techniques
High-throughput screening (HTS) of large chemical libraries
Fragment-based drug discovery (FBDD)
Molecular docking

Drawbacks:
The HTS and FBDD approaches are labor-intensive, costly, and time-
consuming
“Accurate” docking of compounds into existing MBLs (crystal structures)
requires initial assumptions of how the compound(s) bind

Our approach
Combines machine learning and HTS to identify inhibitors of NDM-1
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Data and Pre-Processing
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Phase 1. Data and Pre-Processing

A | B | C | D | E | F | G | H | | J
SMILE
1 BrC1=CC2=C(NC{=0)\C2=N\NC(=0)C2=CC=C(C=C2)C2=NC=C(02)C2=CC=CC=C2)C=C1
2 0C1=C2N=CC=CC2=C{Cl)C=C1C[NC1=CC=CC=N1)C1=CC=CC(Cl)=C1
3 COC1=CC(=CC{0C)=C10C)C(=0)N\N=C\C1=CC{=CC=C10)\N=N\C1=NON=C1C
4 CCOC1=CC=C(C=C1)C(NC1=CC=CN=C1)C1=CC(Cl)=C2C=CC=NC2=C10
5 CC1=CC=NC{NC([C2=CC(C)=CC=C2C)C2=CC=C3C=CC=NC3=C20)=C1
6 OC1=C2N=CC=CC2=CC=C1C{NC1=NC=CC=C1)C1=CC{0C2=CC=CC=C2)=CC=C1
7 CC1=CC=NC(NC({C2=CC=C{C=C2)N{=0)=0)C2=CC=C3C=CC=NC3=C20)=C1
8 0C1=C2N=CC=CC2=CC=C1C{NC1=CC=CC=N1)C1=CC=C{F)C=C1
9 0C1=C2N=CC=CC2=CC=C1CN1CCN{CC2=CC=C3C=CC=NC3=C20)CC1

v

43,366
Compounds U.
Texas Lab HTS

screen+ 538

published
ds f . . 10 CC{C)C1=CC=C{C=C1)C(NC1=CC=CC=N1)C1=CC=C2C=CC(C)=NC2=C10
colpEl _S el 11 COC1=CC=C{C=C1C)C(NC1=CC{C)=CC=N1)C1=CC=C2C=CC=NC2=C10
website 12 COC1=C{OC)C=C{C=C1)C1=CSC{NC{=0)NC2=CC=C{C=C2)N{=0}=0)=N1

13 CCC1=CC=C{C=C1)C(NC1=CC(C)=CC=N1)C1=CC=C2C=CC=NC2=C10

14 CC1=CC=C2C=CC{C(NC3=CC=CC=N3)C3=CC=CC=C3C)=C(0)C2=N1

15 BrC1=CC=C{C=C1)C1=NC2=CC{NC({=0)COC3=CC=CC=C3N(=0)=0)=CC=C201
16 CC1=CC=NC{NC{C2=CC=C3C=CC(C)=NC3=C20)C2=CC=CC=C2N(=0)=0)=C1

17 CC1=CC=C2C=CC{C{NC3=CC=CC=N3)C3=CC=CC(=C3)N(=0)=0)=C{0)C2=N1

18 CIC1=CC=C{01)\C=N\NC(=0)COC1=C2N=CC=CC2=C(Br)C=C1Br

19 CC1=CC=C2C=CC{C{NC3=CC=CC=N3)C3=CC=CC=C3Cl)=C({0)C2=N1

20 COC1=CC{=CC(1)=C10)C(NC1=CC=CC=N1)C1=CC(Cl)=C2C=CC=NC2=C10

https://mblinhibitors.miamioh.edu/




Phase 1. Data and Pre-Processing

IC,, IS a quantitative measure indicating how much
-abel S00d of a particular substance (e.g. drug) is needed to
%inhibition Inhibit, in vitro, a given biological process or
Zﬁﬂo‘g‘; s biological component by 50%.
values< 10 . Published compounds were defined as “Good” if
M (jéf:)% of the published IC., values were <10 puM.
Compounds from HTS were defined as “Good”

Label Bad when more than 50% inhibition was observed at 10
inhibitors UM | A B c

. e 1 SMILE Response
%inhibition 2 1 BrC1=CC2=C{NC(=0)\C2=N\NC({=0)C2=CC=C(C=C2)C2=NC=C(02)C2=CC=CC=C2)C=C1  Good
<50% at 10 3 2 0C1=C2N=CC=CC2=C{Cl)C=C1C{NC1=CC=CC=N1)C1=CC=CC{Cl)=C1 Good

4 3 COC1=CC{=CC{OC)=C10C)C{=0)N\N=C\C1=CC(=CC=C10)\N=N\C1=NON=C1C Good

}JM or IC50 5 4 CCOC1=CC=C(C=C1)C(NC1=CC=CN=C1)C1=CC{Cl)=C2C=CC=NC2=C10 Good
values > 10 6 5 CC1=CC=NC{NC{C2=CC(C)=CC=C2C)C2=CC=C3C=CC=NC3=C20)=C1 Good
7 6 OC1=C2N=CC=CC2=CC=C1C{NC1=NC=CC=C1)C1=CC(0C2=CC=CC=C2)=CC=C1 Good

M M 8 7 CC1=CC=NC(NC{C2=CC=C(C=C2)N{=0)=0)C2=CC=C3C=CC=NC3=C20)=C1 Good

9 8 0C1=C2N=CC=CC2=CC=C1C{NC1=CC=CC=N1)C1=CC=C(F)C=C1 Good

10 9 OC1=C2N=CC=CC2=CC=C1CN1CCN(CC2=CC=C3C=CC=NC3=C20)CC1 Good

" 10 CC(C)C1=CC=C{C=C1)C{NC1=CC=CC=N1)C1=CC=C2C=CC(C)=NC2=C10 Good

11 COC1=CC=C(C=C1C)C(NC1=CC{C)=CC=N1)C1=CC=C2C=CC=NC2=C10 Good

12 COC1=C{0C)C=C{C=C1)C1=CSC{NC(=0)NC2=CC=C{C=C2)N(=0)=0)=N1 Good
13 CCC1=CC=C(C=C1)C{NC1=CC(C}=CC=N1)C1=CC=C2C=CC=NC2=C10 Good

wora



Phase 1. Data and Pre-Processing

AvlaDesc:
SMILE: Simplified optamn
Molecular Input Entry Molecular

1D and 2D
SySte m Descriptors

alvaDesc

A E C D E F G H I J K L Y ™
SMILE.x Response MW ANW Sv Se Sp Si M Me Mp Mi GD
1 BrC1=CC2=C{MC{=0)\C2=N\NC(=0)C2=CC=C{C=C2)C2=MC=C{02)C2=CC=CC=C2)C=Cl Good 487.33 10.36872 34.416 479198  35.307 51.9542 0.732255 1.01957 0.751213 1.105409 0.072581
2 OC1=CIN=CC=CC2=C(CI)C=C1C{NC1=CC=CC=N1)C1=CC=CC(Cl)=C1 Good 396.29 9.435476 30.1216 42,4653 31.5172 464987 0.717181 1.011079 0.75041 1.107112 0.08547
3 COC1=CC{=CC{OC)=C1lOC)C{=0)N\N=C\C1=CC{=CC=C10}\N=N\C1=NON=C1C Good 440.46 8.470385 34.1048 53.7598  34.091 59.1526 0.655862 1.033842 0.655596 1.13755 0.068548
4 CCOC1=CC=C({C=C1)C{NC1=CC=CN=C1)C1=CC{Cl)=C2C=CC=NC2=C10 Good 405.591 B.2B3878 33.0625 49.2361 34.6366 54.5945 0.674745 1.004818 0.706869 1.114173 0.078818
5 CC1=CC=NC{NC{C2=CC(C)=CC=C2C)C2=CC=C3C=CC=NC3=C20)=C1 Good 369.5 7.245098 33.047 504687 35.0856 56.8563 0.84798 0.989582 0.687953 1.114829 0.082011
6 OC1=C2N=CC=CC2=CC=CIC{NCI1=NC=CC=C1)C1=CC{OC2=CC=CC=C2)=CC=C1 Good 419.51 7.915283 36.235 52,9124 37.7787 58.8505 0.683679 0.998347 0.712806 1.106613 0.072581
7 CC1=CC=MC(NC[C2=CC=C({C=C2)N({=0)=0)C2=CC=C3C=CC=NC3=C20)=C1 Good 386.44 B.222128 31.9176 47.5743 32,7161 52.5278 0.679098 1.012219 0.696087 1.117613 0.078818
8 OC1=C2AN=CC=CC2=CC=C1C{NC1=CC=CC=N1)C1=CC=C(F)C=C1 Good 345.4 B.22381 28.8499 42.3306 29.7389 46.9504 0.686902 1.007871 0.708069 1.117867 0.089231
9 OC1=CAN=CC=CC2=CC=CICMNICCN(CC2=CC=C3C=CC=NC3=C20)CC1 Good 400.52 7.417037 34.7832 53.B978 30.5458  60.564 0.644133 0.998107 0.676774 1.121556 0.078161

10 CQ{C;CIZCC:C C=C1)C{NC1=CC=CC=N1)C1=CC=C2C=CC{C)=NC2=C10 Good 383.53 7.102407 34,5738 53.3523 36.847 60.2715 0.640256 0.983006 0.682352 1.116139 0.078813




Phase 1. Data and Pre-Processing

There is a relationship between
the chemical or 3D structure of a
molecule and its biological
activity.

We used Python’s RDKit
package to break compounds
Into scaffolding groups.

Open-Source Chaminformatics
and Machine Learning

Define
Murko
Scaffolding
groups with
RDKit. Split
compounds
into training
and test
using
scaffold
groups

\

Training
data
n=33,032
compounds
with 1.74%
Good

inhibitors

Test data
n=10,395
compounds
with 1.90%
Good
inhibitors

The use of scaffold-based
sampling in the creation
of the training and test
data sets led to improved
model performance when
new compounds were
encountered by the model
(Yang et al. (2018))



Phase 1. Data and Pre-Processing

To reduced computational burden and
account for redundancy in the descriptors
we used PCA.

400 PC accounted for 99.125% of the
original variation

Synthetic Minority Oversampling Technique
(SMOTE) is a common method to deal with
Imbalanced data.

P
|

®  Majority samples
® Minority samples
s Synthetic sample

PCAto
reduce
2,244
descriptors

to 400
PCs

PCA using
training
data
weights to
reduce to
400 PCs

\ 4

Apply
(SMOTE) to
increase good
inhibitors to
5% of total
sample (1,728
good
inhibitors).
Final training
sample
n=34,184
compounds




XGBoost

XGBoost (eXtreme Gradient Boosting) is an implementation of gradient
boosted decision trees designed for speed and performance.

The objective function of XGBoost contains a regularization parameter that
controls the complexity of the trees.

n K
Obj = Z (v, 7) + kz Afi)

The regularization parameter encourages simple models which in turn have
smaller variance in future predictions, making them stable.



Phase II: Model Tuning

Balanced Training set
1 —»  XGBoost Model 1
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Balanced Training set
Comb 28 " 2 g —»  XGBoost Model 2 Obtain individual 18 XGBoost
Randomly sample -ombine 1,728 goo Balanced Training set ot model
1,728 bad inhibitors '”rt‘)'bg‘.’ri.‘g"h 1,728 g 9% I xGBoost Model 3 Thofﬁ'é’ ;f;r']‘;tf'g:‘; efgr predictions to
without replacement ad inhibitors to o obtain final
create 18 balanced Balanced 'I"‘ramlng Set Ly XGBoost Model 4 test data predictions
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° °
° °
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Balanced Training set | XGBoost Model 18

Repeat to create 18
18 balanced
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Establish tuning
parameters via I-
optimal
hyperparamter
modeling and cross-
validation




Phase II: Model Tuning

Randomly
sample
1,728 bad
inhibitors
without
replacement

Combine
1,728 good
inhibitors with
1,728 bad
inhibitors to
create 18
balanced
training sets

Repeat to
create 18
balanced
samples

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, WOL. 39, NO. 2, APRIL 209 539

Exploratory Undersampling for
Class-Imbalance Learning

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou, Senior Member, IEEE

Abstraci—Undersampling is a popular method in dealing with
dass-imbalance problems, which uses only a subset of the majority
dlass and thus is very efficient. The main deficiency is that many
majority class examples are ignored. We propose two algorithms
to overcome this deficiency. Eas yEnsembl e samples several subsets
from the majority class, trains a learner using each of them,
and combines the outpuis of those learners. BalanceCazcade
trains the learners sequentially, where in each step, the majority
class examples that are correctly classified by the current trained
learners are removed from further consideration. Experimental
results show that both methods have higher Area Under the RO(C
Curve, F-measure, and G-mean valoes than many existing class-
imbalance learning methods. Moreover, they have approximately
the same training time as that of undersampling when the same
number of weak dassifiers is used, which is significantly faster
than other methods.

Index Terms—Class-imbalance learning, data mining, ensemble
learning, machine learning, undersampling.

fying a minority class instance is usually more serious than
misclassifying a majority class one. For example, approving a
fraudulent credit card application is more costly than declining
a credible one. Breiman er al. [7] pointed out that training
set size, class priors, cost of errors in different classes, and
placement of decision boundaries are all closely connected. In
fact. many existing methods for dealing with class imbalance
rely on connections among these four components. Sampling
methods handle class imbalance by varying the minority and
majority class sizes in the training set. Cost-sensitive learning
deals with class imbalance by incurring different costs for
the two classes and is considered as an important class of
methods to handle class imbalance [37]. More details about
class-imbalance learning methods are presented in Section I1.
In this paper, we examine only binary classification problems
by ensembling classifiers built from multiple undersampled




Phase II: Model Tuning

- Erllleze « Sample to sample
XGBoost has 6 tuning Training set 1 - XGBoost Model 1 varial?ion " smaril
parameters_ B_a_ance —> XGBoost Model 2 o
Model Tuning Methods ~Lana seL | xGBoost Model 3 | ¢ We can assess overfitting,
grid search %ﬁi* XGBoost Model 4 | common to ensemble
Bayesian optimization _Training set 4 . . models
We used an I-optimal salanced | | XGBoostModel | * Second-order model
experimental design (N=34) | Training set 18 18 R2=0.99 (training)
and second order model to | R2=0.94 (test)
find optimum values for the Etsljﬁf’ri'gsr‘
tuning parameters for each parameters
of 18 samples via I-optimal
Response is AUC hyperparamter
modeling and
Cross-

M validation



Phase II: Model Tuning

At this point we have 18 individual XGBoost
models.

We used each model to obtain predictions
on full test set and then combined
predictions (simple average).

Obtain
individual
model
predictions for
the PC
transformed
test data

Ensemble
the 18
XGBoost
model
predictions
to obtain
final
predictions




Model Validation

. We applied the model to the National Center for Advancing Translational
Sciences (NCATS) Genesis library containing 76,369 unique compounds
The model was used to score and rank compounds
The top 2,816 compounds were then used in quantitative HTS
160 compounds were flagged as “hits” IC., < 50uM
9 of those had IC, < 10uM
This translates to activity rate of 0.32% for the IC., < 10pM compounds
Most HTS studies have activity rate of 0.01-0.14%

Model lift between 2.23 and 32!



Inhibitor 72922413

This one of the “Good” inhibitors flagged by the model in the Genesis library.
This inhibitor binds to NDM-1 at the metal site the inhibitor does not "pull"
the zinc out of NDM-1, which is good!

This inhibitor potentially stops NDM-1 from hydrolyzing the beta-lactams by
binding at the zinc ions, rendering them ineffective.




Conclusion

The model is freely available for scientist to score potential
new MBL on the https://mblinhibitors.miamioh.edu website.

Smiles

Next steps are to create training data for toxicity, solubility
and other important properties needed for a compound to redeen
be a viable drug.

Research reported in this presentation was supported by the National Institutes of Health under award number: R15GM134454


https://mblinhibitors.miamioh.edu/
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