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Antimicrobial resistance happens when germs like bacteria and fungi develop 

the ability to defeat the drugs designed to kill them.

Antimicrobial resistance is an urgent global public health threat, killing at least 

1.27 million people worldwide.

In the U.S., more than 2.8 million antimicrobial-resistant infections occur each 

year. 

Source: https://www.cdc.gov/drugresistance/about.html

Antibiotic resistance



Bacterial infections are most commonly treated by the use 

of β-lactam antibiotics.

A common mechanism for β-lactam resistance is the 

production of β-lactamases, which hydrolyze the β-lactam 

ring, thus rendering the drugs inactive.

Source: https://en.wikipedia.org/wiki/Beta-lactam_antibiotics

β-lactam antibiotics



β-Lactamases can be categorized into serine-β-lactamases (SBLs) and metallo-

β-lactamases (MBLs)

SBLs are more clinically-prevalent and there exist inhibitors, which given in 

combination with β-lactam containing antibiotics, combat bacteria that produce 

some of the SBLs. 

There are no clinically-approved inhibitors available for MBLs, making infections 

from MBL-producing bacteria a serious challenge.

β-Lactamases



• New Delhi metallo--lactamase (NDM-1) is an enzyme that 

makes bacteria resistant to a broad range of beta-lactam antibiotics

• NDM-1 is the most prevalent MBL worldwide.

• NDM-1 functions through two zinc ions present in the active site that cause 

hydrolysis of the beta-lactams, rendering them ineffective.

• Inhibitors either bind at the zinc site or rip the zinc off completely.

New Delhi metallo--lactamase (NDM-1),



Current Techniques
• High-throughput screening (HTS) of large chemical libraries
• Fragment-based drug discovery (FBDD)
• Molecular docking

Drawbacks:
• The HTS and FBDD approaches are labor-intensive, costly, and time-

consuming
• “Accurate” docking of compounds into existing MBLs (crystal structures) 

requires initial assumptions of how the compound(s) bind

Our approach
• Combines machine learning and HTS to identify inhibitors of NDM-1

Finding MBL Inhibitors
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Label Good 
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Label Bad 
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μM 

Phase 1: Data and Pre-Processing

• IC50 is a quantitative measure indicating how much 

of a particular substance (e.g. drug) is needed to 

inhibit, in vitro, a given biological process or 

biological component by 50%. 

• Published compounds were defined as “Good” if 

the published IC50 values were <10 μM.

• Compounds from HTS were defined as “Good” 

when more than 50% inhibition was observed at 10 

μM
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There is a relationship between 
the chemical or 3D structure of a 
molecule and its biological 
activity.

We used Python’s RDKit 
package to break compounds 
into scaffolding groups.

The use of scaffold-based 

sampling in the creation 

of the training and test 

data sets led to improved 

model performance when 

new compounds were 

encountered by the model 

(Yang et al. (2018))
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• To reduced computational burden and 

account for redundancy in the descriptors 

we used PCA.

• 400 PC accounted for 99.125% of the 

original variation

• Synthetic Minority Oversampling Technique 

(SMOTE) is a common method to deal with 

imbalanced data.



• XGBoost (eXtreme Gradient Boosting) is an implementation of gradient 

boosted decision trees designed for speed and performance.

• The objective function of XGBoost contains a regularization parameter that 

controls the complexity of the trees.
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• The regularization parameter encourages simple models which in turn have 

smaller variance in future predictions, making them stable. 

XGBoost
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• XGBoost has 6 tuning 
parameters

• Model Tuning Methods 

• grid search 

• Bayesian optimization 
• We used an I-optimal 

experimental design (n=34) 
and second order model to 
find optimum values for the 
tuning parameters for each 
of 18 samples

• Response is AUC

• Sample to sample 
variation is small

• We can assess overfitting, 
common to ensemble 
models

• Second-order model 
R2=0.99 (training) 
R2=0.94 (test)
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• At this point we have 18 individual XGBoost 

models.

• We used each model to obtain predictions 

on full test set and then combined 

predictions (simple average).



Model Validation

• We applied the model to the National Center for Advancing Translational 

Sciences (NCATS) Genesis library containing 76,369 unique compounds

• The model was used to score and rank compounds 

• The top 2,816 compounds were then used in quantitative HTS

• 160 compounds were flagged as “hits” IC50 < 50μM 

• 9 of those had IC50 < 10μM 

• This translates to activity rate of 0.32% for the IC50 < 10μM compounds

• Most HTS studies have activity rate of 0.01-0.14%

• Model lift between 2.23 and 32!



Inhibitor 72922413

• This one of the “Good” inhibitors flagged by the model in the Genesis library. 

• This inhibitor binds to NDM-1 at the metal site the inhibitor does not "pull" 

the zinc out of NDM-1, which is good!

• This inhibitor potentially stops NDM-1 from hydrolyzing the beta-lactams by 

binding at the zinc ions, rendering them ineffective.



• The model is freely available for scientist to score potential 

new MBL on the https://mblinhibitors.miamioh.edu website. 

• Next steps are to create training data for toxicity, solubility 

and other important properties needed for a compound to 

be a viable drug.

Conclusion
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