
Robustness of the One-Class Peeling method to the Gaussian

Kernel Bandwidth

Lina Lee1, Maria L. Weese2, Waldyn G. Martinez2, and L. Allison Jones-Farmer2

1Department of Statistics, Virginia Tech, Blacksburg, VA
2Department of Information Systems & Analytics, Miami University, Oxford, OH

Abstract

The One Class Peeling (OCP) method is an outlier detection method for Phase I analysis

of large multivariate samples. The two stage OCP method is based on support vector data

description and employs the Gaussian kernel function to create sequential flexible boundaries

to peel away observations to estimate the center of a data set. Subsequently the distance from

that estimated center is used as the monitoring statistic. In this work we study the effect of

the bandwidth parameter for the Gaussian Kernel on the performance of the OCP method.

We find that the OCP method is robust to the value of the bandwidth parameter in terms

of in-control and out-of-control simulation performance. We verify these results on example

data. The result is a recommendation for a small value of the bandwidth value, providing a

computational advantage to the OCP method.

Keywords: Convex Hull Peeling, Outlier Detection, Phase I, Support Vector Data Description

1 Introduction

Statistical Process Control is typically divided into two important stages, Phase I, where a baseline

in-control state is established and Phase II where a process is monitored for changes from the in-

control state. Phase I consists of retrospectively analyzing process data to determine if abnormal,

or out of control, behavior occurred. Examples of abnormal process behavior include process mean

shifts, change points and extreme observations or outliers. This work focuses on the problem
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of detecting outliers in a retrospective sample. While there are many methods for robust outlier

detection1–6, outlier detection in high-dimensional, multivariate data is more challenging. Martinez

et al. 7 introduced the One Class Peeling (OCP) method to detect outliers in high-dimensional data

for the purpose of establishing a baseline sample in the Phase I stage of process control. The OCP

method is particularly appealing since it does not require covariance estimation and works well

when larger percentage of outliers are present. There are very few Phase I methods available that

will work with large, multivariate, data sets when the number of observations (n) is less than the

dimension of the data (p) and are computationally feasible. One of those methods is the Robust

Minimum Diagonal Product (RMDP)8. The RMDP method uses only the diagonal elements of

the sample covariance matrix and therefore can be applied efficiently in settings where p is large.

Martinez et al. 7 compared the OCP method with an improved version of the Ro et al. 8 method

and and showed OCP outperformed the RMDP. For a reveiw of Phase I methods, see Jones-Farmer

et al. 9 . In this work we investigate properties of the OCP method.

The OCP method is a two stage method using an iterative peeling approach, similar to convex

hull peeling10. In the first stage, iterative boundaries are constructed via Support Vector Data

Description (SVDD)11. These boundaries are used to “peel” observations from the data until a

specified number of observations remain. The center of the data is then robustly estimated using

the remaining observations. A distance measure between each observation and the center is used

to evaluate outlyingness. Potential outliers are flagged using an empirical threshold established to

control the false positive rate to a user specified level. The boundaries, or peels, constructed via

SVDD are found from

minimize
R,ξi

F (R, ξi) = R2 + C
∑
i

ξi

subject to ‖xi − µ‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i,
(1)

where C influences the size of the boundary based on the fraction of observations that are outside

the boundary. Martinez et al. 7 suggest setting the parameter C to create boundaries that include

all possible points.

Using Lagrange multipliers, Tax and Duin 12 showed that incorporating the constraints from
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Equation (1) results in the need to maximize

L =
∑
i

αiαj(xi · xj)−
∑
j

αiαj(xi · xj) (2)

with respect to αi such that 0 ≤ αi ≤ C. Maximizing Equation (2) results in a set of αi such

that when an observation, xi satisfies ‖xi − µ‖2 < R2 in Equation (1), the corresponding αi = 0,

and these observations are inside of the boundary. When, ‖xi − µ‖2 = R2 and αi > 0 these

observations are the support vectors providing the description of the data and, thus, the one-class

boundary. Boundaries constructed with Equation (2) are hyper-spheres12. In order to construct

more flexible boundaries the inner products in Equation (2) are replaced with a kernel function.

The OCP method can be used with many kernel functions, but we consider the implementation

using the Gaussian kernel function7 defined as

KSG(xi,xj) = exp

(
−‖xi − xj‖2

s2

)
, (3)

where the parameter s must be pre-specified by the user. Weese et al. 13 studied the effect of s

when using the Gaussian kernel function with the k−chart14 and concluded s should be set equal

to the dimension of a data set, p, when the data are scaled to unit variance.

In this work, we investigate the choice of s and the performance of the OCP method in terms

of Finite Sample Replacement Breakdown Point (FSRBP) and performance detection rate in sit-

uations where outliers are present (out-of-control) and when they are not (in-control). We find

that the performance of the OCP method is invariant to the choice of s, making the OCP method

more robust than was originally presented in Martinez et al. 7 . The implication of this finding is

the shape of the boundary using a Gaussian kernel function is not important to the performance of

the OCP method. With this knowledge, the value of s can be set to minimize the computational

requirements of the method, thus improving the speed of application of the OCP in practice.

The rest of this paper is organized as follows. Section 2 describes the OCP method in further

detail. Section 3 describes the behavior of the estimation of the center when s is varied. Section

4 illustrates the performance of the method in in-control and out-of-control situations. Section 5
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illustrates the robustness of the method on an example. Finally, in Section 6, we offer concluding

remarks.

2 The OCP Method

The OCP method is a two-stage method that consists of (1) robustly estimating the center of the

data; and (2) comparing the distance of observations from the center to a threshold to determine

outlyingness.

To estimate the center, boundaries are constructed using Equation (2) where the dot product

is replaced by Equation (3). The parameter C, which helps to control the boundaries is set so that

the boundaries are inclusive of all points. Once the boundary is constructed, those points identified

as support vectors (αi > 0) will be peeled, or removed from the data and another boundary

is constructed with the remaining data. This process of generating boundaries and peeling the

exterior observations is repeated until a specified number of observations are left. The default is

to peel until n = 2. The mean estimator µ̂OCP is determined by averaging the last remaining

observations.

In the second step of the method, the Gaussian kernel is again used to calculate a distance from

the estimated center using

KD(xi, µ̂OCP) = 1−KSG(xi, µ̂OCP).

The distance value KD(xi, µ̂OCP) ranges from 0 to 1 and is 0 if and only if xi = µ̂OCP. To determine

outlyingness the kernel distances are first re-scaled by

sRKDi =
KD(xi, µ̂OCP )−med(KD)

MAD(KD)
.

Here, med(KD) is the median of the vector of N kernel distances, where N is the sample size,

and MAD(KD) is the median absolute deviation of the N kernel distances. Outliers are identified

as those with sRKDi greater than a threshold, h. Martinez et al. 7 provided an algorithm and

code to determine the threshold value, h, for a desired false positive rate based on the underlying
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Figure 1: OCP Example on a 2-dimensional blobs data set. 50 inlier observations generated with
µ0 = [0, 0], and 5 outlier observations generated with µ1 = [2.5, 2.5]. Contours indicate kernel
distance from support vectors.

distribution of of the data, an estimate of the amount of correlation present, and the size of the data.

If the user is unable to provide these characteristics about the data, Martinez et al. 7 provided a

robust value of h. Figure 1 illustrates how the OCP method works using a synthetic 2-dimensional

data set centered at µ0 = [0, 0], with 5 outlying points centered at µ1 = [2.5, 2.5]. Figure 1

shows how the OCP method initially creates boundaries around both the inlier and outlier groups

peeling away the most unusual observations. By the third iteration OCP has peeled all outlying

observations, and by the final iteration µ̂OCP is close to the mean of the inlier data, µ0.

The bandwidth parameter s in Equation (3) is an important parameter in the OCP algorithm.

The value of s changes the shape of the flexible boundary generated from SVDD and has been

shown to dramatically affect performance of the k-chart13, which is a control chart based on a

single SVDD boundary. Figure 2 shows three one-class boundaries generated on a subset of the

Wine Quality data set15 using different values of s. The example illustrates how smaller values of

s produce boundaries that fit more tightly to the perimeter of the data.

Weese et al. 13 suggested a value of s = p for use with the k-chart when the data are scaled to

unit variance. Martinez et al. 7 used only s = p to evaluate the performance of the OCP method.

In this work we investigate how changing the value of s affects the performance of the OCP method
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Figure 2: Example with different values of s on two variables from the Wine Quality15 data set.

in both (1) determining the center of data and (2) correctly identifying outlying observations.

We investigate the effect of changing s on the robust mean estimator, µ̂OCP, by evaluating the

empirical Finite Sample Replacement Breakdown. In addition, we evaluate the performance of the

OCP method in correctly identifying outlying observations in both out-of-control scenarios (outliers

present) and in-control scenarios (no outliers present).

3 Empirical Finite Sample Replacement Breakdown

The robustness of a mean estimate to the presence of outliers can be measured in terms of the

Finite Sample Replacement Breakdown Point (FSRBP). Donoho and Huber 16 defined the FSRBP

of a location estimator, tN , based on a data set, S, as the smallest fraction, m/N , of outliers that

can take the estimate “over all bounds” :

ε∗(tN , S) = min
1≤m≤N

{
m

N
: sup
SO

||tN (S)− tN (SO)| | =∞

}
,
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where the supremum is taken over all possible corrupted samples, SO = {y1, · · · ,ym}, for yi ∈ Rp,

obtained by replacing m points from S with arbitrary values. It is not possible to analytically

evaluate the FSRBP of the OCP estimator7; thus empirical methods must be used to evaluate the

breakdown properties of µ̂OCP. Martinez et al. 7 evaluated the empirical FSRBP of µ̂OCP when

s = p and showed that it begins to break down at around 30-35% contamination. Notably, Martinez

et al. 7 also computed the empirical FSRBP of µ̂OCP for several values of remaining observations,

n after the peeling process. Their results suggest that µ̂OCP is most robust when n = 2.

To empirically evaluate FSBRP of the OCP method when s changes we vary probability dis-

tribution; the original sample size of the data, N ; dimension, p; correlation structure, Σ; and

bandwidth, s. We generate correlated and uncorrelated samples of from multivariate normal, log-

normal and t(df=10)-distributions. The uncorrelated samples have a covariance of Σ = I and

correlated samples have a correlation matrix generated randomly such that it is positive semi-

definite with correlations uniformly ranging from [−1, 1]. The bandwidth parameter is adjusted

according to the dimension, p, ranging from values s = 0.1p to s = 3p. Table 1 provides a summary

of the simulation conditions for the FSBRP simulations.

Distribution Correlation Bandwidth

Normal uncorrelated 0.1p
Lognormal correlated 0.5p
t(df=10) 0.75p

p
1.5p
3p

Table 1: The summary of simulation conditions for FSBRP simulations.

We generate p dimensional samples of size N containing both in-control and out-of-control

points. Out-of-control samples, SO, contain a p dimensional sample of size m outliers. The in-

control samples, SI , contain N −m inliers. The in-control samples are generated from each distri-

bution with mean of µ0 = 0 and covariance of Σ. For a given probability distribution, FX(·), 500

replications are summarized to obtain the breakdown percentages. We generate the p-dimensional

outlier sample, SO, of size m from FY (·), with a shifted mean µ+δ where δi = 20σii, for i = 1, . . . , p

for the multivariate normal and t-distributions, and δi = e20σii for the multivariate lognormal dis-
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tribution. The value of δi is chosen such that the means of the inlier and outlier distributions are

as far apart as numerically measurable. The estimator, µ̂OCP is considered to breakdown when

.05 > 1−
∫ µ̂1
−∞ ...

∫ µ̂p
−∞ fX(x1, ..., xp)dx1...dxp, where µ̂>OCP = [µ̂1, ..., µ̂p] is the one-class peeling esti-

mate of the mean of FX(·). We measure the percentage breakdown as a function of changing values

of s.

(a) s = 0.1p (b) s = 0.5p (c) s = 0.75p

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 3: Breakdown points for the uncorrelated normal distribution case

Figures 3 and 4 show the FSRBP for both uncorrelated and correlated normal distributions

with samples with N = 50 with s increasing from s = 0.1p to s = 3p. Upon first glance we

notice the FSRBP performance is very stable around 30% as s increases until s = 3p where we

notice the breakdown point increases to about 35% but in general the the breakdown performance

does not appreciably change with p. When samples were generated from the uncorrelated and

correlated lognormal and t(df=10)- distributions, the results are similar (see Appendix A). From
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(a) s = 0.1p (b) s = 0.5p (c) s = 0.75p

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 4: Breakdown points for the correlated normal distribution case

these simulations we conclude that the empirical FSRBP of the µ̂OCP does not change with respect

to the bandwidth parameter, s; thus, µ̂OCP is robust to s.

4 Outlier Detection Performance Simulations

In this section we examine the effect of s on the ability of the OCP method to correctly iden-

tify in- and out-of-control observations. We generate data from normal, lognormal and t(df=10)-

distributions for various values of N and p. We generate Σ with specific values of the off diagonals,

either ρ = 0 or ρ = 0.75 to clearly illustrate the OCP performance under two different corre-

lation structures. Table 2 summarizes the simulation settings for evaluating the in-control and

out-of-control performance of the OCP for different values of s.
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Sample Size Distribution Correlation Bandwidth

N=50,p=50 Normal ρ = 0 0.1p
N=50,p=100 Lognormal ρ = 0.75 0.5p
N=100,p=100 t(df=10) 0.75p

p
1.5p
3p

Table 2: The summary of performance simulation conditions

We perform 1000 replications for each of the 18 combinations of sample size, dimension, dis-

tribution, and correlation for each of the 6 different bandwidth values. For the in-control cases,

we measure the false positive rate α̂i = FPi
N ∗ 100, where FPi is the number of false positives,

and the statistical distance between the in-control mean, µ0 and the estimated mean, µ̂OCP, see

Equation (4). To classify observations as outlying, we use the exact empirical threshold values

presented in Martinez et al. 7 in Appendix Table D, which set the empirical false positive rate at

5%.

Distance =

√
(µ0 − µ̂OCP)′Σ−1 (µ0 − µ̂OCP) (4)

To generate out-of-control samples we shift 10% of observations to a new mean, µ1, where µ1 = µ0+

δ. The value of δ is assigned such that (µ0+δ) is unlikely to be generated from the same distribution

as the in-control data. To ensure equivalent shifts in µ1 across the different distributions, we set

the value of δ such that 0.023 = 1 −
∫ µ1+δ1
−∞ · · ·

∫ µp+δp
−∞ fx(x1, · · · , xp)dx1 · · · dxp where fx(.) is the

in-control density function and µ0 = [µ1, · · · , µp]>. Martinez et al. 7 showed that the performance

of the OCP method is stable with regard to the percentage of outliers; thus, we generate all out-of-

control samples with 10% outliers. Out-of-control performance is measured using the classification

rate, CRi (%) = TPi+TNi
N × 100 and detection rate, DRi (%) = TPi

TPi+FNi
× 100. Here TPi is the

number of true positives and TNi is the number of true negatives. In addition, we compute the

distance from estimated mean, µ̂OCP to the true mean µ0 using the statistical distance as defined

by (4).
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4.1 In-Control Simulation Results

Figure 5 shows the empirical false positive (FP) rate over 1000 simulations for N = 50 and p = 50

samples of correlated and uncorrelated observations from each of the three distributions. We

immediately notice that the FP is very stable across the various bandwidth values both in terms

of the mean and the distribution of values over the simulations. The results indicate that the value

of s does not affect the in-control performance of the OCP method. This pattern is repeated for

the other two sample sizes tested, see Appendix B.1.

Figure 5: False Positive Rate for in-control samples with N=50, p=50. The red dot indicates the
mean.

Figure 6 shows the distribution of the statistical distances between the true mean, µ0 and

the estimated mean, µ̂OCP for different values of s. This plot gives an indication of the bias

of the estimator, where an average distance of zero indicates an unbiased estimator. Here, the

results suggest a consistent and small bias for normally distributed cases, regardless of s or the

correlation structure of the data. Similar results are shown for the t-distribution cases. The

lognormal results display a consistent, but larger bias than the symmetric distributions when no

correlation is present, indicating a different measure of central tendency should be used with skewed
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distributions. Although the presence of high correlation in the lognormal distribution seems to

mitigate the bias in the estimator, we observe a similar pattern for larger sample sizes, see Appendix

B.2. The presence of some bias in µ̂OCP does not affect the empirical false positive rate which is

stable at about 5% on average, or the ability of the OCP to correctly identify outliers (see Section

4.2).

Figure 6: In-control statistical distance between µ̂OCP and µ0 for samples with N=50, p=50. The
red dot indicates the mean.

4.2 Out-of-Control Simulation Results

Figure 7 shows the empirical classification rates for samples of size N = 50 and p = 50 for the

distribution and correlation combinations as the bandwidth, s changes. The distribution of the

classification rates are noticeably similar across all values of s, with minor changes in the lower

tails of the distribution. The results suggest that, on average, the classification rate is stable

with respect to the bandwidth parameter, s. Results from additional sample sizes are available in

Appendix C.2 and show the same pattern.
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Figure 8 shows the detection rate as the bandwidth changes and again we see that although the

tail of the distribution of the detection rate changes with increased correlation, the performance does

not vary across changing values of s. It is interesting to note that for the highly correlated cases,

although the mean detection rate remains high across the distributions, all distributions showed

some cases of poor performance in the simulation. Additional results are given in Appendix C.1.

Lastly we assess the statistical distance between the estimated center and the true center when

outliers are present in the sample. Figure 9 shows a similar pattern to Figure 6 indicating the bias

of the estimator is not changed with changing values of s or with outliers present in the sample.

We observe the same behavior with the uncorrelated lognormal data as we did when the samples

contained no outliers. The similarity of the out-of-control statistical distances to those of the in-

control cases is not surprising as the outliers are likely to be peeled, not affecting the estimator,

µ̂OCP .

Figure 7: Classification Rate for samples with N=50, p=50, 10% outliers. The red dot indicates
the mean.
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Figure 8: Detection Rate for samples with N=50, p=50, 10% outliers. The red dot indicates the
mean.

Figure 9: Statistical Distance between µ̂OCP and µ0 for samples with N=50, p=50, 10% outliers.
The red dot indicates the mean.
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5 Example

Martinez et al. 7 analyzed an example data set which contained Wikipedia search hits on pages

associated with players, teams, and coaches in the NFL. The OCP method was applied to residuals

from an additive Holt-Winters model lagged by 24 hours on the original data using the empirical

threshold from the t(df=10)- distribution. The data set is estimated to be contaminated with about

29% outliers which are defined by unusual events of interest. We applied the OCP method with

different values of the bandwidth, s, to evaluate the detection rate and classification rate. Figure 10

displays the detection rate and classification rate for this example Similar to the simulation results,

the bandwidth parameter, s has little to no effect on the performance of the OCP method on this

example data.

Figure 10: Detection Rate and Classification Rate over changing bandwidth for the NFL Example
data from Martinez et al. 7 .

6 Discussion and Conclusion

The OCP method is a robust outlier detection method that works well for high-dimensional data

and can be applied in Phase I of process control to identify a baseline sample. Code implementation

of the OCP method can be found at https://github.com/martinwg/OCP.git. The OCP method
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requires selection of a Gaussian kernel bandwidth parameter, s that controls the shape of the kernel

used to define the perimeter of the data. Using extensive simulations, we have shown that the choice

of the bandwidth parameter s, ranging from s = 0.1p to s = 3p has little effect on the performance

of the OCP method in in-control and out-of-control situations. The primary advantage of this

finding for the OCP method is the practitioner need not be concerned with the effect of s on the

performance of the OCP method.

Our findings suggest the estimator, µ̂OCP is slightly biased in the cases of symmetric data

and shows larger bias in the case of skewed data. The presence of high correlation in the case

of the lognormal distribution mitigated this bias to some degree. Interestingly our results show

that regardless of the bias in µ̂OCP, the average in- and out-of-control performance as measured by

empirical false positive, classification, and detection rates were unchanged, regardless of the choice

of the bandwidth parameter, s.

While the bandwidth parameter, s does not affect the performance of the OCP method, it

does have an affect on the number of observations peeled at each iteration when computing the

estimator, µ̂OCP. Figure 11 illustrates the number of support vectors assigned at each peel of the

OCP method for in-control data. The support vectors are the observations which are removed each

time a SVDD boundary is constructed. For the majority of the distributions studied, a smaller

value of s will lead to more observations removed at each peel therefore requiring fewer SVDD

boundaries to be constructed in application of the OCP method. The pattern of smaller s leading

to more support vectors is observed across all sample sizes and for in- and out-of-control data

(see Appendix D). Thus, we recommend the practitioner select a smaller value of s, which creates

boundaries that more tightly estimate the data in order gain computational efficiencies.

As an additional note, the parameter C from Equation (1) also controls the number of observa-

tions identified as support vectors for a given data description from SVDD. Modifying C might also

increase the number of observations removed at each iteration of the peeling algorithm; however,

we have not evaluated how this will effect the performance of the method. Evaluating the effect of

C on the performance of the method will be left to future research.
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Figure 11: The Number of Support Vector Per Peel N=50, p=50
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A Additional FSRBP Simulation Results

(a) s = 0.1p (b) s = 0.5p (c) s = 0.75p

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 1: Breakdown Rate (Uncorrelated lognormal distribution)
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(a) s = 0.1p (b) s = 0.5p (c) s = 0.75p

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 2: Breakdown Rate (Correlated lognormal distribution)
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(a) s = 0.1p (b) s = 0.5p (c) s = 0.75

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 3: Breakdown Rate (Uncorrelated t-distribution)
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(a) s = 0.1p (b) s = 0.5p (c) s = 0.75p

(d) s = p (e) s = 1.5p (f) s = 3p

Figure 4: Breakdown Rate (Correlated t-distribution)
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B Additional In-control Simulation Results

B.1 False Positive Rate

Figure 1: False Positive Rate N=50, p=100

Figure 2: False Positive Rate N=100, p=100
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B.2 Statistical distance

Figure 1: Distance between the true mean and the estimated mean, N=50, p=100

Figure 2: Distance between the true mean and the estimated mean, N=100, p=100
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C Additional out-of-control Simulation Results

C.1 Detection Rate

Figure 1: Detection Rate N=50, p=100

Figure 2: Detection Rate N=100, p=100
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C.2 Classification Rate

Figure 1: Classification Rate, N=50, p=100

Figure 2: Classification Rate, N=100, p=100
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C.3 Statistical Distance

Figure 1: Distance between the true mean and the estimated mean (N=50, p=100)

Figure 2: Distance between the true mean and the estimated mean (N=100, p=100)
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D The Number of Support Vectors Per Peel

D.1 IC scenario

Figure 3: The Number of Support Vectors Per Peel, N=50, p=100

Figure 4: The Number of Support Vectors Per Peel, N=100, p=100
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D.2 OC scenario

Figure 1: Number of Support Vectors Per Peel in the Simulation with Outliers, N=50, p=50

Figure 2: Number of Support Vectors Per Peel in the Simulation with Outliers, N=50, p=100

30



Figure 3: Number of Support Vectors Per Peel in the Simulation with Outliers, N=100, p=100
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