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Abstract

Despite the vast amount of literature on supersaturated designs (SSDs), there is a scant

record of their use in practice. We contend this imbalance is due to conflicting recommendations

regarding SSD use in the literature as well as the designs’ inabilities to meet practitioners’

analysis expectations. To address these issues, we first summarize practitioner concerns and

expectations of SSDs as determined via an informal questionnaire. Next, we discuss and compare

two recent SSDs that pair a design construction method with a particular analysis method.

The choice of a design/analysis pairing is shown to depend on the screening objective. Group

orthogonal supersaturated designs (Jones et al. 2019), when paired with our new, modified

analysis, are demonstrated to have high power even with many active factors. Constrained

positive V ar(s)-optimal designs (Weese et al. 2017), when paired with the Dantzig selector,

are recommended when effect directions can be reasonably specified in advance; this strategy

reasonably controls type 1 error rates while still identifying a high proportion of active factors.

Keywords: Dantzig selector, GO-SSD, Orthogonality, Power, Sparsity, Type 1 Error

1 Introduction

“I think it is perfectly natural and wise to do some supersaturated experiments.”–John Tukey

(from a discussion of Satterthwaite 1959)
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A screening experiment is tailored to understanding a complex, expensive system by efficiently

identifying the system’s most influential factors. Supersaturated designs (SSDs) are posited to

effectively screen factors even when the number of runs is less than the number of considered factors.

SSDs were introduced by Satterthwaite (1959) and initiated into the mainstream experimental

design literature several decades later (Lin 1993; Wu 1993). The body of work that composes

the research area today is impressive (see the review by Georgiou 2014) but despite all this work,

there is a scant record of SSDs in practice (Carpinteiro et al. 2004; Jridi et al. 2015; Dejaegher

and Vander Heyden 2008). To help convince practitioners of their value, this paper reassesses the

pairing of an SSD’s construction and analysis.

Screening is the first stage of a sequential experimental procedure and involves the choice of a

design and analysis combination. The analysis aims to classify factors into those that should be

further studied (i.e. “potentially active”) and those that can be ignored (i.e. “inactive”). Later

stages of the sequential procedure target further understanding of the potentially active factors.

The successful use of SSDs is predicated on the assumption of sparsity, which argues that most

process variation will be driven by a few factors. In particular, the practitioner must first posit a

statistical model that specifies one or more parameters to characterizes how a factor can influence

the response. An analysis method is chosen for model/variable selection and subsequent parameter

estimation. The most basic screening model includes just the linear main effects:

Yi = β0 +
k∑

j=1

βjxij + εi, i = 1, 2, . . . , n (1)

where n is the number of runs, εi ∼ N(0, σ2), xij is the j-th factor’s setting for run i, and βj

is an unknown parameter. The model is equivalently written as Y = Xβ + ε, where X is the

n × (k + 1) model matrix, β is a (k + 1)-vector of model parameters, and Y and ε are n-vectors,

with ε ∼ N(0, σ2I). The j-th factor is considered active if |βj | > t for some threshold t ≥ 0.

Model (1) assumes each factor’s effect on yi is linear and independent of the levels of the other

factors, i.e. there are no interaction effects. Even though model (1) is likely inaccurate, it is

reasonable to believe it can explain much of the response’s variation. There are screening designs
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that entertain more complicated models either by allowing more parameters to be estimated (e.g.

Draguljić et al. 2014) or by making the analysis robust to model misspecification (e.g. Li and

Nachtsheim 2000; Loeppky et al. 2007; Smucker and Drew 2015; Shi and Tang 2019). Such designs

tend to require more runs than those targeting estimation of model (1), especially if k is large.

A screening analysis pairs a factor classification rule with estimators β̂j . The level of uncertainty

associated with β̂j for SSDs, and the assumption of a follow-up experiment, justifies designating

promising factors as “potentially active” instead of simply “active”. The screening classification

rule depends on the experimenter’s willingness to risk classifying an inactive factor as potentially

active (type 1 error) and classifying a truly active factor as inactive (type 2 error). Our type

1 error definition differs slightly from convention because the decision we are making is whether

or not to conduct further experimentation on a factor. Factors declared as inactive are assumed

to be entirely removed from future consideration, so the definition of type 2 error, and hence

the equivalent definition of power, is conventional. Simultaneously minimizing type 1 error and

maximizing power becomes challenging as n decreases because the uncertainty of our estimates

increases. A trade-off must be made that depends on the budget for future experimentation and

the overall goals. Is it important that few, if any, active factors are omitted, even at the expense of

more type 1 errors? Or is the goal to to identify as many active factors as possible, while controlling

the type 1 error more stringently? We argue that the best choice of SSD construction and analysis

depends on this practitioner-specified trade-off.

The fundamental principle of experimental design is that the data collection procedure strongly

influences an estimator’s statistical properties, and hence factor classification. Knowledge of this

relationship should be leveraged whenever possible to compare and rank designs; this is well

understood for least-squares estimation. A linear model is said to be estimable if the least-

squares estimator is unique, which holds if and only if X has full column rank. The estimator,

β̂LS = (XTX)−1XTY, has covariance matrix σ2(XTX)−1 and is unbiased if the model is correctly

specified. Screening based on β̂LS is commonly done via hypothesis testing, which practitioners are

comfortable with. In particular, β̂LS has good screening properties for a given design if σ2(XTX)−1

is “small.” The ideal matrix, XTX = nIn, comes from regular and nonregular fractional factorial
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designs, having an X with settings ±1 and mutually orthogonal columns. Such designs produce β̂LS

with minimum variance, thereby maximizing power and minimizing the type 1 error. For SSDs,

such an X cannot exist and, even worse, the main-effect model is not least-squares estimable.

The lack of unique least-squares estimators with SSDs and no clear connections between X

and penalized estimators makes it difficult to justify a screening criterion to rank potential SSDs.

Instead, designs have been constructed via heuristic measures of orthogonality based on the off-

diagonals of XTX = (sij). For example, the E(s2)-criterion forces s0j = 0 and minimizes E(s2) =(
k
2

)−1∑
1≤i<j≤k s

2
ij . Such criteria intend to approximate the ideal structure XTX = nIn as closely

as possible, even though non-least squares estimation methods such as stepwise selection or penal-

ized regression must be used. While these heuristic measures reasonably promote good screening

properties, their connection to estimation is not as rigorous as for traditional screening designs

based on least-squares (e.g., strength 2 or 3 orthogonal arrays). Because of this, there has been no

clear consensus about the optimal pairing of SSD criteria and analysis strategy, which may partially

explain why practitioners are hesitant to adopt the methodology.

Recently, two new SSD criteria have been developed and shown to improve over existing ap-

proaches in identifying potentially active factors. Weese et al. (2017) construct SSDs with the

constrained-positive V ar(s) (V ar(s+)) criterion that forces the average off-diagonals of XTX to

be positive, but not too large, while minimizing their variability. Through an extensive simulation

study, the authors found the V ar(s+)-optimal designs had higher power and smaller type 1 error

compared to other SSDs when effect directions were known and when analysis was performed with

the Dantzig selector (Candes and Tao 2007). When effect directions were unknown, all of the SSDs

in their study had equivalent performance. The superior performance is then tied to the analysis

method and additional assumptions regarding β. The group orthogonal SSDs (GO-SSDs) by Jones

et al. (2019) create SSDs with a group factor structure along with extra fake factors that can pro-

duce a screening-independent estimate of the error variance. The design structure is paired with

a two-stage least-squares analysis method capable of performing group and factor screening with

high power for sparse β and ideal partitions of active factors across the groups.

Figure 1 shows the pairwise column correlations of SSDs constructed with the unbalanced E(s2)
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(UE (s2); to be discussed later), V ar(s+), and GO-SSD criteria for n = 20 and k = 24. In contrast

with the UE (s2)-optimal design, the V ar(s+) criterion tends to produce columns with more positive

correlation. Figure 1(c) shows the group orthogonal structure of the GO-SSD, and that factors

within a group have relatively high correlation. Table 1 compares several characteristics for the

designs in Figure 1. While the UE(s2)-optimal design has a smaller UE(s2) value, the V ar(s+)

design has a smaller variance of the sij ’s (V ar(s)) and a noticeably larger average value of the sij ’s

(UE(s)), as intended. The UE(s2) value for the GO-SSD is nearly twice as large as that of the

other two designs. All three designs exhibit similar average absolute column correlation (Mean |r|).

(a) UE(s2) (b) V ar(s+) (c) GO-SSD

Figure 1: Correlation color plots of three n = 20, k = 24 SSDs: (a) UE (s2)-optimal; (b) V ar(s+);
and (c) GO-SSD. Blue represents positive correlation; red represents negative correlation

Table 1: Comparison of n = 20, k = 24 SSDs

Design UE (s2) UE (s) V ar(s) Mean |r| Max |r|
UE (s2)-optimal 5.813 0.120 5.809 0.097 0.414

V ar(s+) 5.973 0.613 5.607 0.097 0.453
GO-SSD 9.600 0.480 9.385 0.078 0.600

The remainder of this article proceeds as follows. In Section 2 we summarize practitioners’

perspectives about SSDs to better understand their concerns and/or misconceptions that have sup-

pressed their use. Section 3 reviews traditional SSD construction and analysis recommendations

and introduces our simulation protocol. The V ar(s+)-criterion and the Dantzig selector are dis-

cussed in section 4. Section 5 reviews GO-SSDs and presents a new analysis method to maximize

power and provide an indication that sparsity assumptions may be violated. Section 6 shows results

from simulation studies to more fully investigate V ar(s+)-optimal designs paired with the Dantzig
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selector and the GO-SSDs paired with the new analysis method. Finally, in Section 7, we conclude

the paper with a discussion of our results, how these results can help allay concerns, and practical

advice for both the design and analysis of SSDs.

2 Practical Perspectives on Supersaturated Designs

The trepidation surrounding the use of SSDs is perhaps due to conflicting recommendations in the

literature. In the article that develops the E(s2) criterion, Booth and Cox (1962) (pg. 489) state:

We have no experience of practical problems where such designs are likely to be useful;

the conditions that interactions should be unimportant and that there should be a few

dominant effects seems very severe.

This directly contradicts the quote at the outset of this paper which is from a discussion of Satterth-

waite (1959). These divergent perspectives continue in more recent work. For example, Georgiou

(2014) (pp. 107) argues:

In conclusion we can say that one should be very cautious when using any method for

constructing, analyzing or generally using SSDs.

On the other hand, Gilmour (2006) (pp. 188) concludes:

For situations where there really is no prior knowledge of the effects of factors, but

a strong belief in factor sparsity, and where the aim is to find out if there are any

dominant factors and to identify them, experimenters should seriously consider using

supersaturated designs.

Marley and Woods (2010) is perhaps the most prominent paper giving practical advice on SSDs.

They provide recommendations on SSD size and true model sparsity based on simulation power.

They state that “the number of runs should be at least three times the number of active factors.”

They also assert that an SSD’s level of saturation, k/n, should be less than 2. We revisit these

results with simulations in Supplementary Materials 1 (Section 3), confirming their rule of thumb
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regarding the run size to active factor ratio, noting that there appears to be a gradual reduction

of effectiveness as k/n increases.

To assess the practical use of and concerns regarding SSDs, we devised an informal question-

naire to collect information from the greater design of experiments (DOE) community, using the

authors’ networks and social media. We received 63 responses to a twenty-item instrument, asking

about current and past experience with DOE and SSDs (included in the supplementary material).

While these results cannot be reasonably taken as representative of any more general, identifiable

population, it was valuable in generating a list of possible reasons experimenters might hesitate to

use SSDs. Section 1 of the Supplementary Material 1 contains the questionnaire results.

Of the 63 respondents, thirteen reported using SSDs in the past. Nineteen reported explanations

of their concerns with these designs, and we have categorized them in the supplementary materials.

One of the most prominent issues that surfaced was that the designs and/or analysis methods lack

sufficient power to detect important effects. We address this concern by studying two relatively

new approaches that provide improved power compared to traditional supersaturated designs.

Another issue raised in the questionnaire is the perceived riskiness of using SSDs, the concern

that such an experiment could be conducted with little information to show for it. Practitioners

should be reminded that SSDs are only recommended during the initial stages in a sequence of

experiments. This perspective reduces the riskiness of using the designs, while offering the possi-

bility of increased overall experimental efficiency if the factor sparsity assumption holds. Another

concern relates to a suspicion that the effect sparsity assumption will fail. There is ample empirical

evidence that factor sparsity holds in many experimental settings (Li et al. 2006; Ockuly et al.

2017). In Li et al. (2006), they estimated that an average of 41% of factors were active, with a

confidence interval whose upper end was 46%. We would expect more sparsity, on average, for

SSDs that investigate many factors about which little is known.
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3 Background and Setting

3.1 Supersaturated Design Construction and Analysis

Most SSD criteria focus on optimizing heuristic measures of orthogonality with respect to the main-

effect model information matrix S = XTX = (sij) where i, j = 0, 1, . . . , k. We focus on two-level

designs having xij = ±1, making sii = n. A design’s proximity to orthogonality here is measured

by a summary of the off-diagonal sij ’s. Early work in the area (Lin 1993; Wu 1993) focused on

constructing E(s2)-optimal designs that require s0j = 0 for j ≥ 1 and minimize the average squared

off-diagonal: 2
k(k−1)

∑
1≤i<j≤k s

2
ij . The unconditional E(s2)-criterion, or UE (s2)-criterion (Marley

and Woods 2010; Jones and Majumdar 2014; Weese et al. 2015) is similarly defined, but includes

the s20j elements and so does not require s0j = 0; that is, UE (s2) = 2
k(k+1)

∑
0≤i<j≤k s

2
ij . Georgiou

(2014) provides a comprehensive review of SSD construction methods.

The literature is replete with proposed methods for SSD analysis. Several works (Marley and

Woods 2010; Draguljić et al. 2014; Weese et al. 2015, 2017) have shown, through extensive simu-

lation studies, that least squares-based procedures, such as forward selection, have poor screening

properties. Other methods fare better, with the Dantzig selector most consistently excellent in

terms of power and type 1 error (Phoa et al. 2009; Marley and Woods 2010; Chen et al. 2013; Drag-

uljić et al. 2014; Weese et al. 2015, 2017; Drosou and Koukouvinos 2018). The Dantzig selector

(Candes and Tao 2007) is a regularization method that constrains an `1-estimator:

β̂DS = arg min
β̃

||β̃||1 subject to ||XT (y −Xβ̃)||∞ ≤ δ , (2)

where || · ||∞ denotes the largest absolute element of the vector argument. In practice, estimates are

generated for many values of δ ≥ 0, generating a profile plot of estimates. We strongly recommend

screening decisions be made with respect to this profile plot (see Section 7), but this somewhat sub-

jective process cannot be carried out in a simulation study. We follow the non-graphical approach

by Phoa et al. (2009) for automated model selection, but use the Bayesian information criterion

(BIC) for model selection, which was utilized by Marley and Woods (2010):
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1. Center y, and center and scale the columns of X to have mean 0 and unit variance. Drop the

intercept column from X.

2. Solve (2) for d values of δ between 0 and maxj |xT
j y|, j = 1, 2, . . . , p. Denote the d estimates

by β̂DS(δ).

3. For each β̂DS(δ), set all |β̂j(δ)| < γ to 0 for some threshold γ > 0. Denote this by β̂DS(δ, γ).

4. For each β̂DS(δ, γ), calculate the least-squares estimates (also known as Gauss-Dantzig esti-

mates) using only predictors with nonzero β̂j(δ, γ) and compute BIC = nln (SSE/n)+kln(n)

where SSE is the sum-of-squared errors.

5. For β̂DS(δ, γ) with the smallest BIC from step 4, factors with nonzero β̂j(δ, γ) are classified

as potentially active; otherwise a factor is inactive.

Centering in step 1 is important because otherwise the intercept parameter would be penalized.

Scaling is needed so that the estimates are not influenced by the potentially unequal lengths of each

centered column of X. The choice of γ in step 3 is critical in the automated use of this Dantzig

procedure. We will discuss and compare several strategies in Section 4.

Marley and Woods (2010) performed a power simulation study for E(s2)-optimal and Bayesian

D-optimal designs using the above Dantzig selector procedure and a Bayesian model averaging

method. They found Bayesian D-optimal SSDs (Jones et al. 2008) had slightly higher power and

that the above Dantzig procedure was the best analysis method considered. Weese et al. (2015)

performed a similar study but also included model-robust (Jones et al. 2009; Smucker and Drew

2015) and UE(s2)-optimal designs. No clear winner emerged among the SSD construction criteria.

We perform our own power simulation approach with V ar(s+)-optimal designs and the Dantzig

selector in Section 4 and for GO-SSDs and the two-stage analysis in Section 5.

3.2 Simulation Protocols

Similar to Marley and Woods (2010) and Weese et al. (2017), we performed several power simu-

lation studies to explore V ar(s+)-optimal designs and GO-SSDs. We outline our basic simulation

approach here, and note any modifications later when needed.
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Several different design sizes were considered, denoted by (n, k): (8, 12), (12, 12), (12, 24),

(16, 28), (20, 24), (24, 28), and (40, 56). As explained in Section 5, GO-SSDs are not available

for sizes (8, 12), (12, 24), and (16, 28). We considered settings with large effect sizes, high spar-

sity, and favorable n/k ratios, as well as more challenging scenarios where the assumption of effect

sparsity is violated. Our goal was to identify scenarios when the methods work well and when

they break down. Model, or β, sparsity, i.e., the number of active factors, was varied according to

0.25n (high sparsity; see findings of Marley and Woods 2010), 0.5n, and 0.75n (low sparsity). The

magnitude of the active effects were randomly generated from Exp(1) + SN , where SN , meaning

signal-to-noise ratio, was set to either 1 or 3. These coefficients either remained positive (effect

directions known), or their signs were randomly set to ±1 with probability 0.5 (unknown effect

directions). The magnitude of the inactive effects were generated by taking the absolute value

of N(0, 6−2) so that 99% of the inactive effects would be less than 0.5 and sufficiently bounded

away from the simulated error variance σ2 = 1. The signs of the inactive coefficients were assigned

according to the simulation scenario (known/unknown). The responses were generated according

to model (1). In total, we considered twelve scenarios in our main simulation study.

A total of 5000 iterations were performed for each simulation scenario, design size, and de-

sign/analysis combination. For each iteration, the active main effect factors were randomly as-

signed to the factor columns of X and a new set of factor effects was generated. We measured the

quality of a design and analysis pairing according to power (proportion of active effects classified as

potentially active) and type 1 error (proportion of inactive effects classified as potentially active).

We also considered false discovery rate (FDR; the proportion of effects classified as potentially

active that are inactive) and the average number of factors declared as potentially active.

4 V ar(s+) Designs and the Dantzig Selector

Weese et al. (2017) proposed the V ar(s+) criterion that minimizes the variance of the off-diagonal
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sij ’s subject to some constraints. Specifically, the criterion value for a given design is:

V ar(s+) = UE(s2)−UE (s)2 s.t.
UE ∗(s2)

UE (s2)
> c and UE (s) > 0, (3)

where UE ∗(s2) is the value for an approximately UE (s2)-optimal design, UE(s) is the average of

the sij , and c is a specified efficiency that determines how near to UE∗(s2) the design is required to

be. This criterion allows the sij ’s to be, on average, more positive than those in the approximately

UE(s2)-optimal design, but with less variability. Because they are constructed algorithmically, the

V ar(s+) designs in this paper are only approximately V ar(s+)-optimal. We have no guarantee

that any of the V ar(s+) designs, constructed using the coordinate exchange approach described in

Weese et al. (2017), are optimal, so we abuse language slightly when we call them “optimal”. We

also note that Jones and Majumdar (2014) provided direct methods to construct UE(s2)-optimal

designs, though in this article we construct them algorithmically. We provide all designs from this

article in the Supplementary Materials.

Weese et al. (2017) found that V ar(s+) designs were superior to UE(s2)-optimal and Bayesian

D-optimal designs when effect directions were correctly specified in advance, having higher power

without elevating type 1 error. Without loss of generality, the known effect directions are assumed

to be positive. If a factor’s effect is assumed negative, then the signs of the elements in the

corresponding column of the V ar(s+) design should be flipped prior to experimentation and then

flipped back to their original signs after experimentation. Even when the effect directions were

misspecified, the V ar(s+) designs fared no worse than the UE (s2) and Bayesian D-optimal SSDs.

Properties of V ar(s+) designs are not yet fully understood, but their effectiveness with known

effect directions appears to be connected to the constraint UE (s) > 0, which apparently biases the

estimates away from 0 and in the positive, known direction. The Dantzig selector appears to aid

in this amplification of estimates. Research is currently underway that seeks to fully understand

the efficacy of pairing V ar(s+) SSDs with the Dantzig selector.
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4.1 Dantzig Selector Thresholds

As we will see in Section 5, GO-SSDs are capable of estimating σ2 and so have a data-driven

threshold for classifying factors. To fairly compare the pairing of V ar(s+)-optimal designs and the

Dantzig selector to GO-SSDs and their recommended analysis, we require a comparable thresholding

method. To this end, we evaluated the impact of three approaches for the Dantzig selector (Section

3.1) on the analysis of V ar(s+) designs.

The first choice sets γ = σ, an ideal approach used in Weese et al. (2017). The second, data-

driven approach was suggested by Phoa et al. (2009) with γ = 0.1 × max|β̂j | where the β̂j ’s are

estimates when δ = 0. Multiplying max|β̂j | by 0.25 or 0.5 could also be reasonable, but 0.1 will

make it likely that γ is smaller than σ. The third version has no threshold (γ = 0), and simply

reports estimates with δ = 0. The resulting β̂DS here will be an `1-sparse, least-squares estimator

since it satisfies the normal equations XTXβ̂DS = XTy. All non-zero estimates are then declared

potentially active. This estimate is not necessarily unique, but does often have exactly n − 1

nonzero estimates, in which case the model is saturated. Intuitively, this chosen model has a high

probability of including most if not all active effects, but may have an inflated type 1 error.

Details and simulation results comparing the three versions of the Dantzig selector for V ar(s+)

SSDs may be found in Section 4 of Supplementary Materials 1. The δ = 0 solution of the Dantzig

selector had the highest power (between 75% to 99%) but also the largest type 1 error rate (between

50% to 75%). The data-driven method with γ = 0.1×max|β̂j | had slightly smaller power (between

60% to 99%), but also smaller type 1 errors (between 10% to 40%) than the δ = 0 solution. Using

γ = σ gave the lowest type 1 error (between 0% to 25%), but also the lowest power (between 50%

to 99%). Regarding the number of potentially active effects identified, the δ = 0 solution finds the

most, averaging about n − 1. The data-driven threshold splits the difference between the δ = 0

solution and γ = σ approach and does not require knowledge of σ. Henceforth, we use the Dantzig

selector with the data-driven threshold (γ = 0.1×max|β̂j |) on the V ar(s+) and the UE (s2) designs.
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5 Group Orthogonal Supersaturated Designs

Jones et al. (2019) constructed SSDs that can estimate σ2 by introducing a group of fake factor

columns (Linkletter et al. 2006; Wu et al. 2007) that are orthogonal to the true factor columns.

The true factor columns are further partitioned into mutually-orthogonal groups, hence the name

group orthogonal SSDs (GO-SSDs). Jones et al. (2019) proposed a two-stage analysis based on

least-squares that leverages the design structure. In the first stage, factors are screened at the

group level using straightforward F -tests. The second stage screens factors within each significant

group using a modified forward selection or all-subsets procedure.

The GO-SSD approach is fairly general, though it has some limitations regarding construction.

Jones et al. (2019) generated designs through a Kronecker product of a Hadamard matrix, Hm and

a small generating SSD, Tw×p. The resulting SSD will have n = mw runs and k∗ = mp columns

in m mutually orthogonal groups each of size p. Each column group will have equal rank, r < p,

equal to the rank of T. The first group includes the intercept column and p− 1 fake factors. The

remaining (m − 1)p columns comprise settings for the actual factors; hence, the GO-SSD screens

k = (m − 1)p factors in n = mw runs. Note that both n,m = 0 (mod 4) and values of k are

restricted since w > p/2 to prevent complete confounding within a group. Factors may be dropped

within a group, but GO-SSDs with the maximum number of factors will have k = 0 (mod 4). For

example, if n = 12 then the only available GO-SSD has m = p = 4, w = 3, and so k = 12 factors.

These restrictions also preclude (8, 12), (12, 24), and (16, 28) GO-SSDs, limiting the comparisons

we can do with the V ar(s+)- and UE(s2)-optimal designs.

Jones et al. (2019) recommended that T be a submatrix of a Hadamard matrix and that m be

as large as possible, producing more factor groups with fewer factors in each. If possible, factors

whose |βj |’s were thought to be largest should be placed in separate groups so their effects can be

estimated with less ambiguity. However, they also recommend that if two factors are thought to

have an interaction effect, they should be placed in the same group since their main-effect estimates

will be orthogonal to their interaction effect.

Recall Table 1, which demonstrates that GO-SSDs can be far from E(s2)-optimal. The dis-

tinguishing feature of the GO-SSD approach that makes its higher E(s2) value tolerable is its
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pre-variable selection estimate of σ2 based on the mean sum-of-squares of the fake factors, denoted

by MSE , which has r − 1 degrees of freedom due to adjusting for the intercept. This is somewhat

of a pure error estimate because it does not depend on the results of the model selection. It is not a

pure error estimate in the conventional sense because it is only unbiased for the main-effect model.

We investigate this in Section 6.2 by simulating unmodelled interactions.

Let Xg denote the g-th group’s factor columns, g = 1, . . . ,m−1, and Pg denotes the orthogonal

projector onto the column space of Xg. Group screening starts by sorting the mean sum-of-squares

for the factor groups, MS g = yTPgy/r, where MS (1) and MS (m−1) denote the smallest and largest

values, respectively. Jones et al. (2019) recommended group screening be done with a backwards

elimination procedure, starting with MS (1). The test statistic F(1) = MS (1)/MSE is compared to

the critical value F (1 − α, r, r − 1) for some significance level α. If F(1) > F (1 − α, r, r − 1), the

first group’s factors are deemed potentially active and, since F(1) ≤ F(g), all factors will be deemed

potentially active and investigated with a secondary screening process, described later.

If F(1) ≤ F (1−α, r, r− 1) all factors in the group are declared inactive, and Jones et al. (2019)

recommended pooling MS (1) with the current MSE . Denote this potential estimate by MSE ∗ which

has degrees-of-freedom df∗d = 2r − 1. Jones et al. (2019) only recommended replacing MSE with

MSE ∗ if it leads to an increase in power for the remaining groups, i.e., when

MSE ∗

MSE
<
F (1− α, r, df∗d )

F (1− α, r, dfd)

where dfd is the degrees-of-freedom for the current MSE . For the first tested group, dfd = r − 1

always, but future group tests will replace dfd with df∗d if we pool. After this pooling step, F(2) is

calculated with the current MSE and is compared to the critical value based on the current dfd

value. The group screening process continues until a group rejects the null hypothesis. All factors

in the remaining groups are also deemed potentially active.

After group screening, Jones et al. (2019) screened the individual factors in the active groups

with a modified forward or sequential all-subsets procedure. For a given active group, g, let g1 be

a set of r1 < r factors in g. The goal is to identify the smallest g1 that does not exhibit lack of fit,
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measured by LOF g1 = MSE g1/MSE , where

MSEg1 =
yT (Pg − Pg1)y

r − r1
.

First, all p models with r1 = 1 factors are considered so LOF g1 is compared to the critical value

F (1−α, r−1, dfd). Any g1 model with LOF g1 < F (1−α, r−1, dfd) does not exhibit lack of fit and the

model with the smallest MSE g1 is chosen as the best model. This would conclude factor screening

for group g. If all LOF g1 ’s exceed F (1−α, r− 1, dfd), then all one-factor models exhibit lack of fit,

so all two-factor models are considered next and we use the critical value F (1− α, r− 2, dfd). The

model size continues to increase as long as all models exhibit lack of fit. If lack of fit is detected

for the model of size r − 1, the first r − 1 factors are deemed active and the remaining factors

are deemed potentially active, requiring future experimentation to screen. We do not make this

distinction in this paper and consider all factors as potentially active.

Following Jones et al. (2019), factor screening starts with the active group having the smallest

MS g. If the best model for this group has less than r factors, then MSE g1 may be pooled with MSE

following the previous pooling rule. This process is then performed on the active group having the

second smallest MS g and continues until all active groups have been analyzed.

The simulations in Jones et al. (2019) calculated power and type 1 error only with respect

to the factors they deem active, not potentially active. In this paper, we only classify factors as

potentially active and inactive, so we would include all factors in our calculation for power and

type 1 error. This will lead to larger power, but also larger type 1 errors. We next investigate some

potential issues with this proposed analysis.

5.1 Modified GO-SSD Analysis to Maximize Power

Just like any group screening method, there are potential issues with the two-stage analysis rec-

ommended by Jones et al. (2019). They remark that the power for a βg with all positive signs

will be high for a GO-SSD, but mixed signs can cause a significant loss of power. To see this, the

noncentrality parameter of group g’s F -test is proportional to βT
g X

T
g Xgβg which equals 0 whenever

βg is in the nullspace of Xg, meaning the null hypothesis is not βg = 0 but rather Xgβg = 0. Hence
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the group F -test will have low power for many βg 6= 0. Group testing will also have high type 1

error when inactive effects have small but nonzero effects, since βT
g X

T
g Xgβg will tend to be greater

than 0, but this will likely be corrected by the secondary factor screening.

Turning now to factor screening, Jones et al. (2019) do not address the possibility that multiple

models of size r1 could have LOF g1 < F (1 − α, r − r1, dfd). Ignoring this possibility and simply

choosing the model with the smallest MSE g1 could be a poor strategy. Even if only one model

were to fail to reject, there would still be some question as to whether we should no longer consider

larger models. This depends on how well the factor screening test approximates a true lack of fit

test, which we now investigate.

For a subgroup g1 of r1 factors in group g, let Xg1 and βg1 be the corresponding submatrix

of Xg and elements of βg, respectively. Similarly define Xg2 and βg2 where g2 are the remaining

factors in group g. Then

E (MSEg1) = σ2 +
βT
g2X

T
g2(Pg − Pg1)Xg2βg2

r − r1
.

Hence LOF g1 is not a valid test statistic for lack of fit because its noncentrality parameter is 0

whenever (Pg−Pg1)Xg2βg2 = 0. As r1 increases, so does the null space dimension for (Pg−Pg1)Xg2

so there are many βg2 6= 0 that satisfy the null hypothesis. This can lead to premature termination

of the sequential factor screening process.

The simulation study in Jones et al. (2019) only considered at most two active factors in a group.

Except with extremely sparse systems, it is reasonable to expect at least one group with more than

two active factors. We conducted a small simulation study comparing the factor power and type

1 error of the Jones et al. (2019) analysis method for groups with two or more active factors. We

followed the protocol in Section 3.2 except for the three sparsity settings. We examined the most

powerful scenario for within-group factor screening by having only one randomly chosen group to

contain active factors, so that the remaining groups’ MS g’s could be pooled with MSE . The three

sparsity settings in Section 3.2 were replaced by the number of active factors in the chosen group,

which varied from 2 to the group size. We considered four GO-SSDs: (12, 12), (20, 24), (24, 28),

and (40, 56). Designs (12, 12) and (24, 28) have groups of size 4 and the other designs have groups
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of size 8. Throughout this paper, hypothesis testing for both groups and factors used α = 0.10.

Figure 2 shows group and factor power and type 1 error rates based on the number of active

factors in a group, indicated by the x-axis. Group power is at or near 100% for all scenarios. The

group type 1 error grows as k increases because the inactive factors’ effects are small but nonzero.

The smaller factor type 1 error shows the factor screening corrects this overselection. Factor power

is near 100% for two active factors but dips below 80% for more active factors. The power is slightly

lower for unknown signs, particularly for the saturated group case. For the two active factor case,

which was explored in Jones et al. (2019), the factor type 1 error was between 8% and 20% due to

our modified definition of type 1 error and inclusions of small effects for the inactive factors.

Figure 2: Power and type 1 error based on the Jones et al. (2019) approach for different group
sizes where only one group is assigned as active. Designs (12, 12) and (24, 28) have groups of size
4 while the other designs have groups of size 8.

To maximize power for the factor screening stage, we propose the following modifications. First,

for a given model size, r1, we collect all models whose LOF g1 < F (1−α, r−r1, dfd) and then classify

all the factors in these models as potentially active. Second, rather than consider models up to size

r− 1, we only consider models up to size br/2c. This choice is due to the skepticism regarding the

validity of the lack-of-fit test. If all models of rank br/2c have LOF g1 > F (1 − α, r − r1, dfd), we

designate all factors in the group as potentially active.
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Our two-stage strategy, denoted MaxPower, should behave similarly to the method by Jones

et al. (2019) when groups have only 1 or 2 active factors. Otherwise, its conservative classification

rule should improve power over the Jones et al. (2019) method, although at a cost of higher type

1 error. As previously discussed, this may be a reasonable trade-off for some practitioners. As we

will see, our strategy often only selects a large number of factors when the system exhibits low

sparsity, which is itself informative.

5.2 Power Simulation Comparing GO-SSD Analysis Methods

We performed a simulation study following the protocol of Section 3.2, and reiterate that the

simulation protocol here differs from Jones et al. (2019) because our inactive factors have nonzero

effects and we allow random assignment of factors (they assigned at most 2 active factors to each

group). Figures 3 and 4 compare the power and type 1 error rate, respectively, for GO-SSDs using

MaxPower and Jones et al. (2019). Figure 3 illustrates the improvement in power that MaxPower

has over Jones et al. (2019), although it is accompanied by a higher type 1 error (see Figure

4). For high sparsity cases, the MaxPower analysis had power close to 1 with type 1 error rates

between 25% and 40%. The final model size in this high sparsity case was generally 50% of k.

For the low sparsity case, nearly all factors were deemed potentially active by MaxPower which is

a reasonable recommendation. The power for the Jones et al. (2019) analysis in the low sparsity

case was generally around 80%, meaning 20% of the truly active factors would be ignored in future

experimentation. This may be acceptable if the experimenter is interested in performing short-term

optimization. Both GO-SSD analysis strategies can specify some potentially active factors as more

likely to be active than others. We discuss this, along with the FDRs and average model sizes of

the two approaches, in Section 5 of Supplementary Materials 1.
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Figure 3: Power vs. Sparsity level for GO-SSDs by size, sign specification (known, unknown) and
model complexity (SN) for each analysis method.

Figure 4: type 1 error vs. Sparsity level for GO-SSDs by size, sign specification (known, unknown)
and model complexity (SN) for each analysis method.
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6 Simulation Study to Compare V ar(s+)-optimal, UE(s2)-optimal

and GO-SSDs

We conducted a simulation study to compare V ar(s+)-optimal and UE (s2)-optimal designs, both

analyzed with the Dantzig selector using the data-driven threshold, and the GO-SSD/MaxPower

approach. We also considered a case with active, but ignored interaction effects, and a null scenario

with no active factors.

There are challenges in comparing GO-SSDs with other designs, because in addition to catego-

rizing factors as “inactive” or “active”, GO-SSDs also have a separate classification for ambiguous

factors that cannot be put in either category. In contrast, V ar(s+)-optimal and UE(s2)-optimal

designs using the automated Dantzig procedure just classify factors as “active” or “inactive”. As

previously discussed, we simplify this by categorizing each factor, as either “potentially active” or

“inactive”. We are not suggesting that all of the “potentially active” are truly active; indeed, for

GO-SSDs, a larger proportion of the potentially active affects will actually be inactive (shown by

elevated type 1 error rates). Instead, we recommend that all supersaturated experiments, whether

GO-SSD or not, be followed up with additional experimentation.

6.1 Base Comparisons

Figures 5 and 6 show the power and type 1 error for the three designs/methods using the simulation

protocol in Section 3.2. For high sparsity scenarios (0.25n), the V ar(s+) and UE (s2) designs are

typically more powerful—or at least not less powerful—than GO-SSDs, while generally having lower

type 1 error rates. For medium sparsity, the V ar(s+)-optimal designs are preferred, with higher

powers and lower type 1 error rates than the GO-SSDs, with the exception of the (40, 56) designs,

for which GO-SSDs are more powerful. In the worst-case-scenario of low sparsity (0.75n), the power

for both the V ar(s+)-optimal and UE (s2)-optimal designs decline across all design sizes while the

GO-SSD power stays relatively constant. Figure 6 shows this increased GO-SSD power is at the

expense of higher type 1 error values.

V ar(s+)/Dantzig dominates the UE (s2)/Dantzig designs in terms of power and type 1 error
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Figure 5: Power vs. Sparsity level for UE (s2) and V ar(s+)-optimal SSDs using the data-driven
DS, and the MaxPower GoSSD approach by size, sign specification (known, unknown) and model
complexity (SN).

when the effect directions are known. When the effect directions are unknown, the power and

type 1 error for these two approaches are nearly indistinguishable. Thus it is advantageous to use

a V ar(s+)-optimal SSD over a UE (s2)-optimal SSD and attempt to specify the effect directions

ahead of time. GO-SSDs also benefit from known effect directions, but not as much as V ar(s+)-

optimal designs. Weese et al. (2017) showed that even when a fraction of the signs were guessed

correctly, there is an improvement in power.

The GO-SSD/MaxPower approach does show increased type 1 error compared to the Jones

et al. (2019) approach. However, the rate is reasonable for situations with higher sparsity and

the number of factors declared potentially active provides a rough index of the degree of sparsity

of the experimental scenario. GO-SSD/MaxPower consistently selects larger models compared to

V ar(s+) or UE (s2) with the Dantzig selector (see Supplementary Materials 1 Section 6). For all

sizes of GO-SSD, FDR decreases with decreasing sparsity; this is usually but not always the case

for the V ar(s+) or UE (s2) SSDs (see Supplementary Materials 1 Section 6). The primary benefit

for GO-SSD/MaxPower is its ability to detect systems that do not exhibit factor sparsity.

Overall, we see good performance in the SSDs if the number of active factors is small relative
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Figure 6: Type 1 error vs. Sparsity level for UE (s2) and V ar(s+)-optimal SSDs using the data-
driven DS, and the MaxPower GoSSD approach by size, sign specification (known, unknown) and
model complexity (SN).

to the number of runs, but as the sparsity decreases, the results from the experiment are more

ambiguous (i.e. the model size increases, especially for GO-SSDs). Ambiguous results suggest the

principle of sparsity is violated and requires the experimenter to augment the SSD.

6.2 Null Case and Interaction Effects

We next considered a case where no factors were active in the true model (null case) and the case

where some two factor interactions were present in the true model but ignored in the analysis.

Table 2 displays the simulated type 1 error for the null case, where each factor was inactive with

unknown effect direction. The GO-SSDs/MaxPower have a much lower type 1 error for all four

of the comparable design sizes. There is little difference between V ar(s+) and UE (s2) in terms

of type 1 error. Their high type 1 error can be attributed to the data-driven threshold. If there

are no active effects, the maximum estimate at δ = 0 will be small, leading to a small threshold

that is often surpassed in the simulations. In practice, we recommend that the Dantzig selector

analysis be conducted via inspection of the profile plots, in which case the null scenario will likely

be evident (see Section 7).
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Table 2: Type 1 error for UE (s2) and V ar(s+)-optimal SSDs using the data-driven DS, and the
MaxPower GoSSD approach for the null scenario, i.e. no active factors. A “-”indicates that (n, k)
combination is not available.

(8,12) (12,12) (12,24) (16,28) (20,24) (24,28) (40,56)

GO-SSD - 0.149 - - 0.156 0.270 0.281
UE (s2) 0.494 0.777 0.374 0.432 0.648 0.667 0.546
V ar(s+) 0.495 0.779 0.376 0.432 0.649 0.666 0.545

To assess potential issues when interactions are present, we generated a response using:

Yi = β0 +

k∑
j=1

βjxij +

k−1∑
j=1

k∑
l=j+1

βjlxijxil + εi, i = 1, 2, . . . , n (4)

where again ε ∼ N(0, 1). We fixed the factor sparsity to 0.25n, SN = 3, and considered both

known and unknown effect directions. We included two interaction effects exhibiting weak heredity

by randomly choosing two active effects and pairing each with a randomly chosen inactive effect.

Their coefficients were generated the same way as the main effects. The remaining interactions

were assigned a coefficient of 0. Although the response was generated according to model (4), only

model (1) was fit. Notably, this small simulation study is extreme with main effects and interactions

assigned the same magnitude and only provides a glimpse of how screening performance changes

when the true model is not dominated by main effects.

Figure 7 shows that the performance of all SSDs/analysis methods suffered from the presence

of interactions, having lower power and higher type 1 error. V ar(s+)/Dantzig exhibit an increase

in power over UE (s2)/Dantzig when effect directions, including the two interactions, are known in

advance. GO-SSDs/MaxPower fared the worst due to the fact that the initial MSE estimate has

a high probability of being severely inflated due to model misspecification. For example, in the

(20, 24) scenario, the median initial MSE estimate across all 5000 simulation was 36.928 which is

much larger than σ2 = 1. Approximately 45% of these simulations had an initial MSE of 2.3 or

less. Jones et al. (2019) overlooked this possibility, citing only that the main-effect columns are

orthogonal to many of their corresponding interaction columns. This orthogonality is only useful

for main effect estimation, but not for screening that relies on MSE .
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Figure 7: Power and type 1 error vs. design size for UE (s2) and V ar(s+)-optimal SSDs using the
data-driven Dantzig selector, and the MaxPower GoSSD when interactions are present in the true
model.

7 Discussion and Recommendations

The analysis goal of an SSD should be to classify factors as potentially active or inactive, in order

to guide follow-up experiments. To best achieve this goal, the SSD and analysis method should be

synergistic. We compared the pairing of V ar(s+)- and UE(s2)-optimal designs with the Dantzig

Selector to GO-SSD and our proposed MaxPower analysis.

For both approaches, the designs account for their nearness to orthogonality in ways that

differ from the straightforward “minimize the average off-diagonal” approach of the classical E(s2)

criterion. For GO-SSDs, the goal is to construct groups of factors that are orthogonal, and use one

group for variance estimation; V ar(s+)-optimal designs are near-UE (s2)-optimal but purposefully

inject extra positive correlation in a way that exaggerates important effects and reasonably controls

type 1 error (Weese et al. 2017). In our simulations, when the effect directions are known, the

V ar(s+) designs have higher power and lower type 1 error rates than UE(s2) designs. When

the effect directions are unknown, the V ar(s+) and UE(s2) have almost identical performance.

Therefore, V ar(s+)-optimal designs should be preferred to UE(s2)-optimal designs in practice.

24



We have also explored GO-SSDs and improved the analysis approach of Jones et al. (2019).

These designs have a group orthogonal structure that facilitates a model-independent estimate

of the error variance. The analysis method presented in Section 5.1 achieves high power while

screening inactive factors out to the extent allowed by the effect sizes and sparsity. The results in

Sections 5.2 and 6 demonstrate that this approach will reliably detect active effects, even under

challenging sparsity and effect size conditions, though in return, the type 1 error eventually becomes

large. On the other hand, the type 1 error indicates the complexity of the experimental setting.

Either there is reasonable sparsity, in which case the type 1 error is fairly small, or there are too

many important effects for an SSD to reasonably be able to screen out the few unimportant effects.

In this latter case, the method will return as potentially active most of the factors in the design.

Neither the V ar(s+)/Dantzig nor the GO-SSD/MaxPower approach can be uniformly preferred

to the other. To decide which to use, the experimenter must specify a more specific screening

objective. Is the goal to retain nearly all of the active effects, even if the experimental setting

is complex? Or, does the experimenter desire knowledge about the complexity of the system

to inform future experimentation? For both of these cases, the GO-SSD/MaxPower approach is

preferred. It is relatively conservative in its screening and the designs are easy to construct and

are analyzed using a method reminiscent of ANOVA . If possible, active factors should be spread

across groups to maximize factor power. A disadvantage of the GO-SSD/MaxPower approach is the

limitation of (n, k) combinations due to the construction method, though perhaps future research

can provide designs with similar properties but more flexible design sizes. Another concern is the

lack of robustness against interactions in the true model. Practitioners interested in this method

can access these designs and analysis via JMP software (SAS Institute, Inc. 2019).

Alternatively, if the goal is to identify active effects while minimizing type 1 error, then exper-

imenters should use the V ar(s+)/Dantzig approach. Any available domain knowledge should be

used to specify effect directions, and the designs should be analyzed with the Dantzig selector. This

strategy will screen fairly aggressively, producing relatively high power and low type 1 error rate

in settings with reasonably high sparsity. (We provide results in the Supplementary Materials 1

that investigate guidelines on SSD sparsity requirements. Like Marley and Woods (2010), we find
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that especially for small experiments, users should hope to have no more than about n/3 active

effects. We also illustrate the importance of the level of saturation, and suggest that supersatu-

ration of k/n > 2 is not recommended.) When sparsity is low, the power to detect active factors

substantially degrades and the type 1 error increases somewhat. Because the V ar(s+) designs are

algorithmically generated, there is flexibility in (n, k) combinations. We have provided a catalog of

V ar(s+) designs for 5 ≤ n ≤ 50 with n+ 1 ≤ k ≤ 2n, as well as R code to implement the Dantzig

selector with proper scaling in the supplementary materials.

In general, we do not recommend that the analysis of a single V ar(s+)-optimal SSD use the

automated procedure described in Section 3.1 but encourage the use of a profile plot instead.

Information on the ambiguity of the analysis is gained by viewing the plot, which is fairly popular

among practitioners (at least among our questionnaire respondents; see Supplementary Materials

1). Figure 8 shows two examples of Dantzig selector profile plots for a (12, 24) V ar(s+) design

under two different scenarios. The plot on the left corresponds to a response having a mean model

with 3 positive effects and SN = 3, and shows three dominant factors. Follow-up experimentation

should focus on the identified factors (e.g., a new, smaller experiment with those three factors to

investigate interaction effects). The right-hand plot corresponds to a response with 8 active effects

with varying signs and SN = 1, and is more ambiguous. In this case, a more extensive follow-up

experiment would be necessary to increase confidence regarding factor importance.

Figure 8: A clear (left) and ambiguous (right) Dantzig selector profile plot of the Dantzig estimates
vs. the shrinkage parameter, δ, for the n = 12, k = 24 V ar(s+) SSD.

The V ar(s+) and GO-SSD procedures are ripe for additional research. Better theoretical under-

standing of the V ar(s+) designs needs to be developed. Since these designs have been successfully
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analyzed using the Dantzig selector, a natural approach would be to construct designs that exploit

properties related to the estimation procedure more directly; this is an area of ongoing investigation.

There is also room to improve the GO-SSD analysis method. In this paper, all testing had a fixed

significance level of α = 0.10; an adaptive cutoff may improve the GO-SSD’s screening properties,

especially in sparse systems in which the GO-SSD approach underperformed relative to V ar(s+).

Based on a simple simulation scenario which included two large two-factor interactions, we have

observed that it is possible that MSE will become severely inflated due to unmodeled interactions,

and this deserves additional research. It may be advantageous to analyze GO-SSDs with both the

recommended approach as well as the Dantzig selector. Comparing the results of the two methods

may provide an indication of model misspecification. For now, if large, two-factor interactions are

suspected, practitioners might consider SSDs robust to two-factor interactions, such as the designs

of Shi and Tang (2019).

In Section 2, we noted that practitioners expressed concerns about the riskiness of using SSDs.

This difficulty was also expressed by two other issues that surfaced: whether the system under

study has enough sparsity to make SSDs viable, and whether the designs have enough power to

detect active effects. The present work should help to alleviate the concern about power. With

reasonable sparsity and effect sizes, the SSDs studied herein have adequate power. The overall

riskiness of the designs may still be a concern, until further work can assure practitioners that even

if the results of an SSD are ambiguous, a follow-up experiment can clarify without wasting the

initial experiment. So far, there is little in the literature to guide a practitioner in such follow-up.

Gutman et al. (2014) is an exception, suggesting an approach based on Bayesian D-optimality.

Traditional techniques such as foldover and semifoldover are also plausible for SSD augmentation

and have not been adequately explored.

We believe that supersaturated designs should become a standard design tool, as part of a

larger sequential approach to experimentation. They should be considered on their own terms,

with experimental goals and analysis methods specified and effectively exploited, in much the same

way as with classical screening experiments. This will lead to improved confidence for practitioners

while providing researchers a new perspective that will result in further improvements.
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Supplementary Materials

Supplementary Materials 1.pdf File titled “Supplementary Materials 1” containing additional

simulation results and full questionnaire analysis.

Copy of SSD questions.pdf Copy of questionnaire discussed in section 2.

designs-catalog-var(s).zip Catalog of V ar(s+) designs for 5 ≤ n ≤ 50 with n+ 1 ≤ k ≤ 2n.

Dantzig Function.R R code for Dantzig selector function with data-driven γ and profile plot.

GOSSD Screen.R R code for implementing the MaxPower analysis method for GO-SSD analysis.

paper-designs.zip File containing all designs used in the paper.
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