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Small 𝑛 to determine which of 𝑝 factors drive response

Factors take on two levels: ±1

Focus on analysis based on main effect model

Assumptions:

• Factor sparsity (𝑘 < 𝑝 factors important)

• For active effects, 𝛽𝑗 ≫ 𝜎

• Negligible interactions

Screening Experiments

𝑦 = 𝛽0 + 𝑋𝛽 + 𝑒 𝑒 ∼𝑖𝑖𝑑 𝑁(0, 𝜎2)



𝑛 ≥ 𝑝 + 1 ( Least Squares ☺): 

• Orthogonal designs (𝑋𝑇𝑋 = 𝑛𝐼) minimize variance

• Least-squares backwards elimination possible

𝑛 < 𝑝 + 1 ( No Least Squares ): 

• Supersaturated case

• Find design with 𝑋𝑇𝑋 ≈ 𝑛𝐼

• Often a regularization method

Screening Design and Analysis Approach



Define: 𝑆 = 𝑋𝑇𝑋 = (𝑠𝑖𝑗) (sometimes includes intercept)

1. E(s2) or UE s2 : minimize the average of sij
2

2. Var s + :minimize Var(sij) average sij > 0. These designs perform well 

when effect directions are known.

3. Pareto Efficient Designs (PED): choose designs on pareto front of two 

Gauss-Dantzig heuristic criteria.  This is the first design construction 

method to connect to penalized estimation (Singh and Stufken (2022) ).

Heuristic Supersaturated Optimality Measures



Dantzig estimates are the solution to:

Candes and Tao (2007) developed a two-stage approach which Phoa et al. 
(2009) used to analyze SSDs. 

1. Apply a threshold value to the Dantzig estimates at each value of δ.
2. Calculates the value of some information criterion using least squares for 

each set of active factors.

We will refer to this two-stage procedure as the Gauss-Dantzig.

Gauss-Dantzig is a Typical Analysis Method for SSD



Solve the Dantzig selector along grid of 𝛿 (solution path).

Gauss-Dantzig Selector Step 1

መ𝛽𝑗

log(𝛿)



For each 𝛿, apply a threshold the Dantzig estimates to find active factors.

Gauss-Dantzig Selector Step 2

መ𝛽𝑗
Threshold

log(𝛿)



Fit OLS on active factors for each 𝛿 and apply information criteria on OLS fits 

to select 𝛿.

Gauss-Dantzig Selector step 3

መ𝛽𝑗 Threshold

BIC: -87.69 -89.22 -85.76 -53.41 -2.60

log(𝛿)



The density of grid of 𝛿 exploring the tuning parameter space impacts 

selection.

Coarse Grid: 10 evenly spaced values excluding endpoints

Fine Grid: 100 evenly spaced values including endpoints

Potential Variations: Tuning Grid Density

0 𝑚𝑎𝑥𝑗 𝑥𝑗
𝑇𝑦

0 𝑚𝑎𝑥𝑗 𝑥𝑗
𝑇𝑦



Without knowledge of 𝜎, data driven thresholds are used:

• Threshold = 0.1 × 𝑚𝑎𝑥𝑗 መ𝛽𝑗 (the value of 0.1 can be changed)

• This maximum occurs at the smallest 𝛿 in the solution path

Potential Variations: Threshold Value

Fine Grid

Coarse Grid

መ𝛽𝑗



We compare PED and 𝑉𝑎𝑟(𝑠+) designs with the Gauss-Dantzig Selector via 

simulation.

• Use the data driven threshold and standard BIC statistic to select 𝛿

• Comparison over 6 scenarios of differing signal-to-noise ratios (SN) and 

different numbers of active effects

We compare coarse vs. fine 𝛿 grids.

Power: Proportion of truly active factors selected as potentially active.

Type 1 Error: Proportion of truly inactive effects selected as potentially active.

Demonstration of Impact of Potential Variations



Scenario: n=14, p=24 with effect signs known

• Coarse 𝛿 grid shows an increase in power for the PED over Var(s+).

• Fine 𝛿 grid does not show the same increase. 

Simulation Comparison



Used designs from Marley and Woods (2010)

• Compare 𝐸(𝑠2)- and Bayes D- optimal designs

• Active effects were generated from 𝑁 𝜇, 0.2

Studied the simulation results comparing following settings:

• Threshold: data driven vs. 𝜎

• Information Criteria: BIC vs. AICc

• Tuning Grid: Fine Grid vs. Coarse Grid

• Dantzig vs. lasso

Simulation to Study Inconsistencies



Scenario: n=14, k=24, μ=3 and c=6 with mixed signs

Simulation to study Inconsistencies

Dantzig Lasso

Type 1 Error and Power are sensitive to the analysis method settings.



Needed: A way to evaluate and compare designs based on exact screening 

probabilities that is not reliant on simulation decisions.

Under the lasso, exact sign recovery probabilities can be simulated or 

calculated via a closed form expression developed in Stallrich et al. 2023.

A Different Approach



Support Recovery:

• All truly active effects are estimated as non-zero 

• All truly inactive effects are estimated as zero 

Sign Recovery:

• All truly active effects are estimated as non-zero with the correct sign

• All truly inactive effects are estimated as zero 

Lasso sign recovery probabilities are mathematically tractable.

A Different Approach



Data generated under model 

• 𝐴 = true active set of 𝛽 𝐼 = 𝐴𝑐 = inactive set of 𝛽

Analysis of transformed model  

• 𝑦∗ =center 𝑦

• Center columns of 𝑋 (remove intercept)

• 𝑉 = 𝐷 𝑛−1 𝑥𝑗 − ҧ𝑥𝑗
2

2
≤ 𝐼

• Use 𝑉 to scale columns so 𝐷𝑖𝑎𝑔
1

𝑛
𝑋∗𝑇𝑋∗ = 1

• 𝛽∗ = 𝑉1/2𝛽 is design dependent

Lasso Transformations

𝑦 = 𝛽0 + 𝑋𝛽 + 𝑒

𝑦∗ = 𝑋∗𝛽∗ + 𝑒∗



Lasso Estimate: መ𝛽∗ = argmin𝛽
1

2𝑛
𝑦∗ − 𝑋∗𝛽 𝑇 𝑦∗ − 𝑋∗𝛽 + 𝜆 𝛽

1

More notation

• 𝑋𝐴
∗ is 𝑋∗ but only columns in 𝐴

• 𝐶𝐴𝐴 =
1

𝑛
𝑋∗

𝐴
𝑇𝑋𝐴

∗ and likewise 𝐶𝐴𝐼

• 𝑧𝐴 = sign vector of 𝛽𝐴

If you have a known lasso support መ𝐴 and sign 𝑧 ෠𝐴:

A closed-form expression for Lasso Solution

መ𝛽 ෠𝐴
∗ =

1

𝑛
𝐶෠𝐴 ෠𝐴
−1𝑋 ෠𝐴

∗𝑇𝑦 − 𝜆𝐶෠𝐴 ෠𝐴
−1𝑧 ෠𝐴

መ𝛽መ𝐼
∗ = 0



Sign recovery occurs when two events of normal random variables hold:

• 𝜙𝜆 𝑋 𝛽 = 𝑃 Ƹ𝑧𝐴 = 𝑧𝐴 𝑋, 𝛽𝐴) = 𝑃 𝐼𝜆 ∩ 𝑆𝜆 |𝑋, 𝛽𝐴
= 𝑃[𝐼𝜆|𝑋, 𝑧𝐴] × 𝑃[𝑆𝜆|𝑋, 𝛽𝐴]

Lasso Sign Recovery

𝐼𝜆|𝑋, 𝑧𝐴 = 𝒗 < 𝜆 𝑛

𝑆𝜆|𝑋, 𝛽𝐴 = 𝒖 < 𝑛 𝑉𝐴

1
2|𝛽𝐴| − 𝜆 𝑛 𝐷 𝐶𝐴𝐴

−1𝑧𝐴𝑧𝐴
𝑇

𝜇𝑣 = 𝜆 𝑛𝐶𝐼𝐴𝐶𝐴𝐴
−1𝑧𝐴 Σ𝑣 = 𝜎2 𝐶𝐼𝐼 − 𝐶𝐼𝐴𝐶𝐴𝐴

−1𝐶𝐴𝐼

𝜇𝑢 = 0 Σ𝑢 = 𝜎2𝐷(𝑧𝐴)𝐶𝐴𝐴
−1𝐷(𝑧𝐴)



• Calculation of 𝜙𝜆 𝑋 𝛽 requires known 𝐴, and 𝛽

• When 𝐴 is unknown but 𝑧𝐴 is known:

• For a given number of active effects 𝑘, let Φ𝜆(𝑋|𝑘, 𝛽) be the average 𝜙𝜆(𝑋|𝛽)
over all possible 𝐴

• When both 𝐴 and 𝑧𝐴 are unknown:

• For a given number of active effects 𝑘, let Φ𝜆
±(𝑋|𝑘, 𝛽) be the average 𝜙𝜆(𝑋|𝛽)

over all possible 𝐴 and 𝑧𝐴

A Relaxation of Local Assumptions



Given number of active effects 𝑘 and tuning parameter 𝜆 :

• Φ𝜆(𝑋|𝑘, 𝛽) is the average sign recovery probability over all possible supports.

• Φ𝜆
±(𝑋|𝑘, 𝛽) is the average sign recovery probability over all possible supports and effect 

directions. 

Plot Φ𝜆(𝑋|𝑘, 𝛽) or Φ𝜆
±(𝑋|𝑘, 𝛽) over a range of log(𝜆)

• Looking for design with larger Φ𝜆 over larger log(𝜆) range

Allows for a more complete comparison of designs robust to tuning parameter value

If scalar measures are desired we recommend either:

• Integrating Φ𝜆 over the range of log(𝜆)

• Taking the maximum Φ𝜆 over log(𝜆)

A Different Approach



• Scenario: n=14, p=24, k=7 with SN=3 and effect signs known

• PED and 𝑉𝑎𝑟(𝑠+)
• Gauss Dantzig selector shows PED is better than 𝑉𝑎𝑟(𝑠+) in simulation

Example 1

• 𝑉𝑎𝑟(𝑠+) is higher for almost all 

log 𝜆

• There are log 𝜆 where PED has a 

larger Φ𝜆

• Advantages to either design

Φ
𝜆
(𝑋
|𝑘
,𝛽
)

log(𝜆)



• Scenario: n=14, p=24, k=6 with SN=3 and effect signs unknown

• 𝐸(𝑠2)- and Bayes-D- optimal designs from Marley and Woods, 2010

• Simulation:  Dantzig-No difference, Lasso – Bayes-D is optimal

Example 2

• Bayes-D dominates 𝐸 𝑠2 over all 

log(𝜆)

• Agrees with lasso simulation results

Φ
𝜆±
(𝑋
|𝑘
,𝛽
)

log(𝜆)



• Comparing/evaluating SSDs using simulations of the GDS can be sensitive 

to the simulation settings

• Our approach utilizes exact lasso sign recovery probabilities

• Reasonably robust to tuning parameter selection

• Unambiguous interpretation of results

• Future work:

• Extend the lasso screening measure to the case where the set of factors 

selected by the lasso contains the true support and possibly a few extra factors. 

Summary
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Scenario: n=12, k=26, μ=3 and c=6 with effect directions unknown

Simulation to study Inconsistencies

Dantzig Lasso
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