Etsy ran this a/b test where they showed additional customer review filters on selected product detail pages. They measured the number of times a user clicked the “Add to basket” button.
## variant click
## 1 Control 0
## 2 Control 0
## 3 Control 0
## 4 Control 0
## 5 Control 0
## 6 Control 0
## # A tibble: 4 × 4
## # Groups: variant [2]
## variant click n freq
## <chr> <int> <int> <dbl>
## 1 Control 0 1224 0.975
## 2 Control 1 32 0.0255
## 3 Test 0 1329 0.959
## 4 Test 1 57 0.0411
iter=100000
a=34+1
b=1222+1
a1=56+1
b1=1330+1
count<-c()
for (i in 1:iter){
A<-rbeta(1, a, b)
B<-rbeta(1, a1, b1)
count[i]<-ifelse(A>B, 1, 0)
}
pdiff<-sum(count)/iter
pdiff
## [1] 0.03102
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(34, 56) out of c(1222 + 34, 1330 + 56)
## X-squared = 3.1666, df = 1, p-value = 0.07516
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.027804564 0.001136611
## sample estimates:
## prop 1 prop 2
## 0.02707006 0.04040404
Individual interval for the test page.
## [1] 0.05211231
## [1] 0.03127159
The Anheuser-Busch beer company wanted to determine how much money to spend on advertising. They tested the following: (i) 50% increase, (ii) no change and (iii) 25% decrease in advertising expenditure over a 12 month period. They studied the changes in three different markets. They wished to make a general conclusion about the advertising expenditure, regardless of market. They measured the total sales by month.
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 1.581e+11 7.905e+10 65.27 <2e-16 ***
## Residuals 105 1.272e+11 1.211e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 1.581e+11 7.905e+10 64.167 <2e-16 ***
## marketing 2 2.774e+08 1.387e+08 0.113 0.894
## Residuals 103 1.269e+11 1.232e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A local pizza chain wished to increase sales on Monday nights. They wish to test two promotions with factors at high levels of A=Free Mozzarella Sticks, B=15% with the low levels being no promotion. They tested the following set of runs on 8 consecutive Monday evenings.
A | B |
---|---|
-1 | -1 |
1 | -1 |
1 | 1 |
-1 | 1 |
1 | 1 |
-1 | 1 |
1 | -1 |
-1 | -1 |
##
## Call:
## lm.default(formula = y ~ (A + B)^2, data = df)
##
## Residuals:
## 8 3 5 2 1 6 7 4
## -13.5669 7.8669 -0.4829 -6.1169 0.4829 6.1169 -7.8669 13.5669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 800.26 4.21 190.080 4.6e-09 ***
## A 46.05 4.21 10.939 0.000397 ***
## B -23.30 4.21 -5.535 0.005206 **
## A:B -55.02 4.21 -13.069 0.000198 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.91 on 4 degrees of freedom
## Multiple R-squared: 0.9877, Adjusted R-squared: 0.9785
## F-statistic: 107 on 3 and 4 DF, p-value: 0.0002827
Comcast customer service monitors the the time it takes to service a customer. Below are the results of the monitoring of random daily samples of size 6 of the number of seconds for customer service calls.
## List of 11
## $ call : language qcc(data = df, type = "R")
## $ type : chr "R"
## $ data.name : chr "df"
## $ data : num [1:20, 1:5] 116 147 121 122 111 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:20] 40.2 20.2 40.3 26.3 36.4 ...
## ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...
## $ sizes : int [1:20] 5 5 5 5 5 5 5 5 5 5 ...
## $ center : num 26.6
## $ std.dev : num 11.4
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 0 56.2
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"
## List of 11
## $ call : language qcc(data = df, type = "xbar")
## $ type : chr "xbar"
## $ data.name : chr "df"
## $ data : num [1:20, 1:5] 116 147 121 122 111 ...
## ..- attr(*, "dimnames")=List of 2
## $ statistics: Named num [1:20] 139 135 141 134 134 ...
## ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...
## $ sizes : int [1:20] 5 5 5 5 5 5 5 5 5 5 ...
## $ center : num 137
## $ std.dev : num 11.4
## $ nsigmas : num 3
## $ limits : num [1, 1:2] 122 153
## ..- attr(*, "dimnames")=List of 2
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"
Social Media Ad Effectiveness
Vuori tested ads on Instagram. They ran an a/b test with two different versions of an ad. The response was a measure of user engagement on a scale of 0 to 100. The company also paid for user data from Instagram so they could have insight on who was engaging with the ad. A new analyst has run the following tests. They showed two different Ads (A) or (B) and also collected covariates like age and device type.
Test 1
Test 2
Test 3