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Definitions

Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k + 1 runs to examine
k factors. For example, the Bayesian D-optimal design, D, uses n = 6
runs to examine k = 9 factors.
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Definitions

Supersaturated Designs

Another situation where "supersaturation” can occur is if the total
number of effects that one wishes to examine, p, is greater than the
number runs n. For example, the n = 12 and k = 6 two-level Bayesian
D-optimal design,
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includes another 15 columns if main effects and two-factor interactions
are screened. Making the model matrix, X, n =12 by p =21 4 1.



Definitions

Notation

k=number of factors

n=number of runs

p=number of effects

D=design matrix

X=model matrix

sij=off diagonal elements of X'X

a=number of truly active factors in simulation

S/N=signal to noise ratio for the truly active factors in simulation

Number of correctly identified active factors
a

Power=

Number inactive factors found to be active

Type | Error= (k—2)
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What size SSD is reasonable?

Effect Sparsity

Fitting the standard linear model y = X3 + ¢ is problematic.

Experimenters must operate under the assumption of effect sparsity to
use a SSD as a screening experiment.



What size SSD is reasonable?

What is Effect Sparsity?

TECHNOMETRICS, FEBRUARY 1986, VOL. 28, NO. 1

oo 26.25,1505.

An Analysis for Unreplicated
Fractional Factorials

INTRODUCTION

Sparsity

Factor Sparsity: Most process
variation is driven by a few factors
(Pareto Principle).

Effect Sparsity: Extends Factor
Sparsity to contrasts.
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What size SSD is reasonable?

is Effect Sparsity in an SSD?
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What size SSD is reasonable?

Number Active to n Ratio

Bayesian D-optimal Designs
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What size SSD is reasonable?

How “Supersaturated” can a Design be?

Design Size

Compuations! s and D s 34 (2010) 31583167
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k to n Ratio

Bayesian D-Optimal designs 22
° c ° ° ° o
HIEE R N B
e @ = 18
0.6 z
0.4 o 1.6k/n
10 ° XXX ° ° ™ 14
‘ °
§ 08 ° @ I 12
gos.e © T g
5 04 ~> 8
510 eoeo o . -
a ) o ©
- 08 ° n
3 06 2
“le
= 04 o ¢ &
1.0 ° o i
o0 ~+ ©
0.8 [ L i Q
0.6 ) o Z
04 e ¢ o
5 10 15 20 25 30 35
n

13 /46



How should the design be constructed?

Outline

© How should the design be constructed?

14 /46



How should the design be constructed?

Construction Criteria

o E(s?)-optimality [1]

2 2 2
E(s):m Zs,-j

1<i<j
@ Bayesian D-optimality [2]

dp = |X'X + K /72|M/ (k)

0 O1xk
K= .
<0k><1 |k><k>

where
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How should the design be constructed?

Construction Criteria, cont.

e Constrained Positive Var(s)-optimality [3]

) 2 Z
Var(s) = E(s?) — E(s)? = ——— by ’
ar(s) (s%) (s) k(k+1) 1<Z,;j K k(k+1) 1<i<j K

subject to

_ E(s)(D7)
EE(Sz) = W >cC

E(s)>0
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How should the design be constructed?

Why does construction matter for analysis?
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How should the design be constructed?

Structure Influences Analysis

Average Power and Type | Error for 17 SSDs-Effect Directions Known
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How should the design be constructed?

Structure Influences Analysis

Average Power and Type | Error for 17 SSDs-Effect Directions Unkown

Scenario
=9, S/N=2
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How should the experiment be analyzed?

Methods used to Analyze SSDs

Regression Methods

Forward Selection [4]

Stepwise Selection [5]
All Subsets Regression
[5]

Singular value

decomposition principal
regression (SVDPR) [6]

Shrinkage Methods

@ Dantzig Selector [7]
@ LASSO [g]

@ Smoothly Clipped
Absolute Deviation
(SCAD) [9]

@ Sure Independence
Screening (SIS) [10]

Other Methods

Simulated Annealing

(SA) [8]

Model Averaging (MA)
[11]

Bayesian Methods
(SVSS, CGS,
SVSS/IBF) [12], [13]

Partial Least Squares
Variable Selection
(PLSVS) [14]

Stepwise Response
Refinement Screener

(SRRS) [15]
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How should the experiment be analyzed?

Results of Simulation Studies

won

A comparison of methods: “x" indicates the method was included in the study.
“1" indicates best performer, “2" indicates the method out performed “1”
under certain conditions.

Study Forward Dantzig Bayesian LASSO SCAD SA PLSVS SVDPR MA SRRS
Selection

Marley and Woods (2010) X 1 2

Dragulji¢ et al. (2014) 1 x x x

Chen et al. (2013) 1 2 (CGS) x x

Phoa (2014) 1 x x x x 2

Weese et al. (2015) x 1

Weese et al. (2017) x 1
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The Dantzig Selector

The Dantzig Selector
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How should the experiment be analyzed?

The Automated Gauss-Dantzig Selector

min 8l st Xy~ XB) <8 (1)

@ Let § vary from 0 to do = max|x/y| and where x; is the ith column
of X.

@ For each value of 4, solve the linear program in equation (1).

Coefficient estimates greater than a user specified threshold value,
v, are retained.

o

@ Fit a linear model using the factors retained in step (3) and calculate
the value of the selection statistic (e.g. AlCc, BIC, etc.)

o

The model at the value § which produces the best value of the
selection statistic is chosen.



How should the experiment be analyzed?

Using the Dantzig Selector

Phoa et al. (2009) recommend using a Profile Plot of the coefficient
estimates vs. § to find the important factors in a single experiment.



How should the experiment be analyzed?

Using the Dantzig Selector

Phoa et al. (2009) recommend using a Profile Plot of the coefficient
estimates vs. § to find the important factors in a single experiment.

Using the automated procedure on slide 24 is not recommend for use in a
single experiment analysis for the following reasons:

@ The specification of +.
@ The choice of §.
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Example 1

5.0-X11

Coefficient Estimate
e
S
g §
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How should the experiment be analyzed?

Example 1

5.0-X11

o
5
(]

Design: n =38, k=12
constrained-positive
Var(s)-optimal with ¢ = 0.8
a=3,S5/N =5 with +
assigned randomly.

Coefficient Estimate
e
S
g §
(]

@ Inactive coefficients sampled
251 from N(0,0.2)

@ § =0 to dp = max(|x/y|).
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Example 2
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How should the experiment be analyzed?

Example 2

@ Design: n =38, k=12
constrained-positive
Var(s)-optimal with ¢ = 0.8
i @ a=6,S/N=3with £+
assigned randomly.

Coefficient Estimate

IS

@ Inactive coefficients sampled
from N(0,0.2)

Delta
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How should the experiment be analyzed?

Example 2: Effect Directions Known

X10

X11

X8

X5

Coefficient Estimate
o

X6
X1

- X8
0 g/

Delta



How should the experiment be analyzed?

Example 2: Effect Directions Known

X0
X1
N

o @ Design: n =38, k=12
E 4 Constrained-positive
i ! Var(s)-optimal with ¢ = 0.8
g @ a=6, S/N =3 now with all
3 positive signs.

¥t @ Inactive coefficients sampled
from abs(N(0,0.2))

Delta
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Conclusions

Conclusion

@ What size SSD is reasonable?

e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.
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Conclusions

Conclusion

@ What size SSD is reasonable?
e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.

@ How should the design be constructed?
o Using the constrained-positive Var(s)-optimality with ¢ = 0.8 .
o Attempt to guess your effect directions a priori.
o Even all effect directions are misspecified, performance will be
equivalent to using a Bayesian D-optimal or a balanced
E(s?)-optimal design [3].

33 /46



Conclusions

Conclusion

@ What size SSD is reasonable?
e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.

@ How should the design be constructed?
o Using the constrained-positive Var(s)-optimality with ¢ = 0.8 .
o Attempt to guess your effect directions a priori.
o Even all effect directions are misspecified, performance will be
equivalent to using a Bayesian D-optimal or a balanced
E(s?)-optimal design [3].

© How should the experiment be analyzed?
o Use the Dantzig selector and a Profile Plot.
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Conclusions

Future Research Questions

@ Can performance of the Dantzig selector be improved in situations
when the assumption of sparsity is not met?

@ Is there an optimal SSD construction method when interactions are
considered in screening?
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Thank you for listening!

weeseml@miamioh.edu

35 /46



Conclusions

References

(1]

12]

3]

[4]

(5]

(6]

7

8]

K. H. V. Booth and D. R. Cox
Some systematic supersaturated designs.
Technometrics, 4(4):489-495, 1962

Bradley Jones, Dennis K. J. Lin, and Christopher J Nachtsheim.
Bayesian D-optimal supersaturated designs.
Journal of Statistical Planning and Inference, 138(1):86-92, 2008.

Maria L Weese, David J Edwards, and Byran J Smucker.
Powerful supersaturated designs when effect directions are known.
Journal of Quality Technology, 49(3):265-277, 2017

Peter H Westfall, S Stanley Young, and Dennis KJ Lin.
Forward selection error control in the analysis of supersaturated designs.
Statistica Sinica, pages 101-117, 1998

B Abraham, H Chipman, and K Vijayan.
Some risks in the construction and analysis of supersaturated designs.
Technometrics, 41(2):135-141, 1999

Stelios D Georgiou
Modelling by supersaturated designs.
Computational Statistics & Data Analysis, 53(2):428-435, 2008

F.K.H. Phoa, Yu-Hui Pan, and H. Xu
Analysis of supersaturated designs via the Dantzig Selector.
Journal of Statistical Planning and Inference, 139:2362-2 2

D. Dragulji¢, D. C. Woods, A. M. Dean, S. M. Lewis, and A.-J. E. Vine
Screening strategies in the presence of interactions.
Technometrics, 56(1):1-16, 2014

36




Conclusions

References (cont.)

101

o]

(11

12

[13]

[14]

[15]

[16]

Runze Li and Dennis KJ Lin.
Analysis methods for supersaturated design: some comparisons.
Journal of Data Science, 1(3):249-260, 2003.

Lindsey Nicely.
Applications of sure independence screening analysis for supersaturated designs.
2012

Christopher J Marley and David C Woods.

A Comparison of design and model selection methods for supersaturated experiments.
Computational Statistics and Data Analysis, 54:3158-3167, 2010

H. Chipman, M. Hamada, and C. F. J. Wu.
Bayesian variable selection for designed experiments with complex aliasing.
Technometrics, 39:372-381, 1997

Ray-Bing Chen, Jian-Zhong Weng, and Chi-Hsiang Chu.

Screening procedure for supersaturated designs using a bayesian variable selection method.
Quality and Reliability Engineering International, 29(1):89-101, 2013

Qiao-Zhen Zhang, Run-Chu Zhang, and Min-Qian Liu
A method for screening active effects in supersaturated designs.
Journal of Statistical Planning and Inference, 137(6):2068-2079, 2007.

Frederick Kin Hing Phoa.
The stepwise response refinement screener (srrs).
Statistica Sinica, 2013

E. Candes and T. Tao.
The dantzig selector: Statistical estimations when p is much larger than n.
The Annals of Statistics, 35(6):2313-2351, 2007



Conclusions

References (cont.)

[17] G.S. Watson
A study of the group screening method.
Technometrics, 3(3):371-388, 1961
[18] B. Bettonvil and J. P. C. Kleijnen.

Searching for important factors in simulation models with many factors: Sequential bifurcation.
European Journal of Operational Research, 96(1):180-194, 1996

38/46



Conclusions

Back-up Slides

39/46



Conclusions

Effect Directions

Draguljic et al.(2014, Technometrics) notes that “[in] many experiments,
for example, in engineering and chemistry, experts are often able to
provide information on the ‘direction’ of each main effect based on
scientific knowledge or previous experience.”

This is an assumption that has often been made in group screening [17]
and sequential bifurcation [18].
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Example 4

X7

b

N

@ n=28, k=12
6 @ Constrained-positive
Var(s)-optimal with ¢ = 0.8
@ 2a=6,S/N=3with £
assigned randomly.
@ n/a=1.33

Coefficient Estimate

ra

Delta
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Example 4: Effect Directions Known

X8y

@ Design: n=38, k=12

@ Constrained-positive
Var(s)-optimal with ¢ = 0.8

@ a=06, up=3 with all
positive signs.

Coefficient Estimate

@ Inactive coefficients sampled
B from abs(N(0,0.2))

@ n/a=1.33 with small active
effects

X4

Delta
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Example 5

Coefficient Estimate

"

TX13

X18:

100

o
o
i
o
i
~
b

Design: n =16, k = 30
Constrained-positive
Var(s)-optimal with ¢ = 0.8
a==6, p=3with £
assigned randomly.

Inactive coefficients sampled
from N(0,0.2)
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Example 6

Coefficient Estimate

=

ra

o
o
o
o
3
~
b

Delta

Design: n =16, k = 30
Constrained-positive
Var(s)-optimal with ¢ = 0.8
a=29, p=3with £
assigned randomly.

Inactive coefficients sampled
from N(0,0.2)
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Example 6: Effect Directions Known

@ Design: n =16, k =30

@ Constrained-positive
Var(s)-optimal with ¢ = 0.8

@ a=29, u=3 with all
positive signs.

Coefficient Estimate

@ Inactive coefficients sampled
from abs(N(0,0.2))

Delta
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Effect Summary LS Means Plot
T Criteria
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Method 576.709 | 0.00000 2o g ver®
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